Abstract:
When a warm-up operation at a set speed is carried out to measure a mechanical loss that is generated during warm-up operation, a device to display setting of operation time, vehicle speed, etc. and the operation status on a single window is demanded. An operation display portion on a top display screen provided on a control terminal includes a menu function block having a warm-up window calling section for calling a warm-up operation window function block. The warm-up operation window function block includes a warm-up condition setting section configured to set a warm-up operation condition, a measurement flow indicating block configured to indicate a warm-up operation by a pattern, a trend indicating section configured to indicate a braking force that is generated upon the warm-up operation in time sequence, and a measurement status indicating block comprising a judgment indicating section configured to indicate measurement results.
Abstract:
The mechanical characterization system includes three main parts: A sub-millinewton resolution capacitive force sensor, at least one micromanipulator with position measurement capabilities, and a microscope. The sensitive axis of the force sensor is adjustably connected via adaptor pieces to the micromanipulator at any angular orientation relative to the sample holder.
Abstract:
An internal residual stress calculating device includes a prediction unit that predicts a temporal variation in deformation which is received by a medium having an image formed thereon from a correcting device correcting a deformation, and a calculation unit that calculates an internal residual stress of the medium having passed through the correcting device on the basis of a relational expression including an elasticity term and a term related to a plastic deformation and the temporal variation in deformation predicted by the prediction unit.
Abstract:
Provided are a thermoelectric conductivity measurement instrument of a thermoelectric device and a measuring method of the same. The thermoelectric conductivity measurement instrument of the thermoelectric device includes a sample piece fixing module configured to provide an environment for measuring physical properties of the thermoelectric device as a sample piece and comprising an electrode part configured to provide contact points which are respectively in contact with both ends of the sample piece, and a measuring circuit module configured to provide a source AC voltage of a first frequency heating the sample piece to the electrode part, detect a first thermoelectric AC voltage of a second frequency greater than the first frequency and a second thermoelectric AC voltage of a third frequency greater than the second frequency, which are generated by a temperature change occurring at the contact points, and then obtain the thermoelectric conductivity.
Abstract:
A self-contained removable electronic module which mounts onto an ordinary football helmet's face mask bars and visually annunciates to the wearing player and game referees the occurrence of a blow to the player's helmet of an impact exceeding a preselected threshold level.
Abstract:
A load cell extending in an axial direction having an outer surface includes a groove in the outer surface having a first flat wall, and a second flat wall; and a principal strain sensor positioned on the first flat wall to measure tension and compression in the axial direction.
Abstract:
A pin and circuit board assembly includes at least three pins (24′, 24″). Each pin includes a first end (35) and a second end (37). All of the first ends of the pins are arranged on a common plane. The second ends of at least two of the pins are disposed on the common plane and a second end of at least one of the pins, other than the two pins, are disposed on a second plane that is offset from the common plane. The second end of each pin is spaced apart from a second end of another pin substantially at an angle of 360/N, where N is the total number of pins. A printed circuit board (22′) includes at least three pin holes (28′, 28″), each arranged to receive a second end of an associated pin in a press-fit arrangement. The assembly avoids tilting of the PCB upon inserting the pins.
Abstract:
In one aspect, wireless strain gauges are described herein. In some embodiments, a wireless strain gauge comprises a radio frequency identification (RFID) tag and a nano-composite backplane coupled to the RFID tag, wherein the resonant frequency of the RFID tag antenna demonstrates an exponential dependence or substantially exponential dependence on the strain sensed by the strain gauge.
Abstract:
An axle load monitoring system configured for use on an axle housing is provided. The axle load monitoring system can include a mounting structure and a strain gauge. The mounting structure can have a first end portion, a second end portion and an intermediate portion. The first end portion can be fixedly coupled to the axle housing. The second end portion can be fixedly coupled to the axle housing. The intermediate portion can be offset away from the axle housing. The strain gauge can be fixedly coupled to the mounting structure at the intermediate portion. The strain gauge can be configured to measure strain of the mounting structure.
Abstract:
A sensing insert device (100) is disclosed for measuring a parameter of the muscular-skeletal system. The sensing insert device (100) can be temporary or permanent. The sensing module (200) is a self-contained encapsulated measurement device having at least one contacting surface that couples to the muscular-skeletal system. The sensing module (200) comprises one or more sensing assemblages (1802), electronic circuitry (307), an antenna (2302), and communication circuitry (320). The sensing assemblages (1802) are between a top plate (1502) and a bottom plate (1504) in a sensing platform (121). The bottom plate (1504) is supported by a ledge (1708) on an interior surface of a sidewall (1716) of a housing (1706). A cap (1702) couples to top plate (1502). The cap (1702) is adhesively coupled to the housing (1706). The adhesive is flexible allowing movement of the cap (1702) when a force, pressure, or load is applied thereto.