Electrostatic atomization ultrasonic aided low-damage and controllable biologic bone grinding process and device

    公开(公告)号:US11406397B2

    公开(公告)日:2022-08-09

    申请号:US16090778

    申请日:2018-02-02

    Abstract: An electrostatic atomization ultrasonic aided low-damage and controllable biologic bone grinding process and device, which solve the problem of debris blockage and have good cooling effect and high operation efficiency. The device includes: a spindle, arranged rotatably; a water-catching grinding tool for grinding a biologic bone, the spindle being connected with the tool through an ultrasonic vibration mechanism, the tool achieving longitudinal and rotary motions under the drive of the spindle and mechanism; a cooling and film forming mechanism on one side of the tool and connected with an ultrasonic generator in the mechanism, a nozzle connected with a medical nano liquid storage cup arranged at the bottom, compressed gas capable of being introduced into the nozzle to perform pneumatic-ultrasonic atomization on a medical nanofluid, the nanofluid being flushed into a grinding zone in droplets for effective cooling and lubrication; and an endoscope on the other side of the tool.

    Robot Teaching System Based On Image Segmentation And Surface Electromyography And Robot Teaching Method Thereof

    公开(公告)号:US20220161422A1

    公开(公告)日:2022-05-26

    申请号:US17153202

    申请日:2021-01-20

    Abstract: The present invention relates to a robot teaching system based on image segmentation and surface electromyography and robot teaching method thereof, comprising a RGB-D camera, a surface electromyography sensor, a robot and a computer, wherein the RGB-D camera collects video information of robot teaching scenes and sends to the computer; the surface electromyography sensor acquires surface electromyography signals and inertial acceleration signals of the robot teacher, and sends to the computer; the computer recognizes a articulated arm and a human joint, detects a contact position between the articulated arm and the human joint, and further calculates strength and direction of forces rendered from a human contact position after the human joint contacts the articulated arm, and sends a signal controlling the contacted articulated arm to move along with such a strength and direction of forces and robot teaching is done.

Patent Agency Ranking