Abstract:
A nanoelectromechanical device is provided. The nanoelectromechanical device includes a nanotube, a first contact, and a first actuator. The nanotube includes a first end, the first end supported by a first structure, a second end opposite the first end, and a first portion. The first actuator is configured to apply a first force to the nanotube, the first force causing the nanotube to buckle such that the first portion couples to the first contact.
Abstract:
A medical equipment case is provided for containing and transporting at least one article of medical equipment and a two-way audio-visual system. Such equipment may be used, for example, for telemedicine applications by a patient discharged from a hospital, or other subject in need of remote health care monitoring. The medical equipment case may include features that provide for security and facilitate return of the medical equipment case and medical equipment and audio-visual system contained therein, such as machine-readable indicia encoding information for return of the case from a usage location. The medical equipment case and contained medical equipment and two-way audio visual system together form a medical support system that can be used by a patient discharged from a hospital. Methods of controlling the medical support system are also described.
Abstract:
Computationally implemented methods and systems include acquiring user preference information of a user that indicates one or more customized food preferences of the user including at least one or more preferences related to integrity of one or more ingredients for use in generating one or more customized food items; identifying one or more capable automated customized food generation machines that have one or more ingredients in one or more sufficient quantities to be able to currently generate at least one customized food item in accordance with the one or more customized food preferences of the user; and presenting, in response at least in part to the identification, one or more indicators that direct the user to at least one automated customized food generation machine. In addition to the foregoing, other aspects are described in the claims, drawings, and text.
Abstract:
A computerized method of customizing hardware for a mobile phone is provided. The method includes receiving shell selection information from a user input device, identifying a set of hardware components, the set of hardware components generated based on a compatibility between the hardware components and the shell selection information, and outputting the identified set of compatible hardware components.
Abstract:
Described embodiments include an apparatus and a method. In an apparatus, a tracking circuit detects a segment of a path defined by a user contact point moving across a touch sensitive display. A filter predicts a next contiguous segment of the path defined by the user contact point in response to an adaptively learned motion parameter. The adaptively learned motion parameter is based on at least two previous instances of the determined motion parameters respectively descriptive of a motion of a user contact point during its movement across the touch sensitive display. A compensation circuit initiates a display by the touch sensitive display of the detected segment of the path and the predicted next contiguous segment of the path. An updating circuit updates the detected segment of the path and the predicted next contiguous segment of the path as the user contact point moves across the touch sensitive display.
Abstract:
Systems and devices for sampling and profiling microbiota of skin are described which include a replaceable microbe sampling unit including at least one rotatable component, an elongated flexible strip, and a location information storage component, the elongated flexible strip including a microbe-capture region configured to capture at least one type of microbe from one or more regions of a skin surface of an individual, and the location information storage component configured to store information associated with the location of said one or more regions of the skin surface of the individual.
Abstract:
Devices and methods for profiling microbiota of skin are described which include a microbe profiling device including a device head and a hand-held housing, the device head including an epidermis-engaging component and an access window and configured to dislodge microbes from a skin surface, and the hand-held housing defining an opening aligned with the access window, the hand-held housing including a motor operably coupled to a motivatable component, a substrate disposed in relation to the motivatable component and including a microbe-capture region, a location-capture component to detect a location of one or more regions of the skin surface as the epidermis-engaging component contacts said one or more regions, at least one sensor component to detect one or more signals emitted or reflected from the microbe-capture region, and a computing component including circuitry to associate the location of said one or more regions of the skin surface and the detected one or more signals.
Abstract:
Embodiments disclosed herein are directed to fluid spraying apparatuses, and related systems and methods. The disclosed fluid spraying apparatuses may be used, for example, to spray a medically suitable fluid on a target region of a subject, such as for treating or removing tissue of the subject. In an embodiment, a fluid spraying apparatus includes a spray mechanism including at least one reservoir, and a spraying device operably coupled to the at least one reservoir which has an adjustable spray nozzle. The fluid spraying apparatus includes a distance sensor configured to sense information at least related to a distance to a target region of a subject and output one or more signals encoding the information, and control electrical circuitry operably coupled to the spray mechanism and the distance sensor. The control electrical circuitry is configured to activate the spray mechanism responsive to receiving the one or more signals.
Abstract:
An electronic cigarette includes a housing, an atomizer disposed in the housing, and a control circuit disposed in the housing and configured to control operation of the atomizer based on time data regarding a current time.