Abstract:
According to one embodiment, an electronic device includes a heat generating part housed inside a cabinet and a loop heat pipe housed inside the cabinet, which includes an internal flow path having a loop shape in which a working fluid is sealed. The loop heat pipe further includes a heat receiving unit, a heat radiating unit, a vapor flow path which allows a gasified portion of the working fluid to flow from the heat receiving unit towards the heat radiating unit, a liquid returning flow path which allows a liquefied portion of the working fluid to flow from the heat radiating unit towards the heat receiving unit, and a wick provided at a position adjacent to the vapor flow path inside the liquid returning flow path. The wick also serves as a partition portion which partitions the vapor flow path and the liquid returning flow path from each other.
Abstract:
A facility is described that includes one or more enclosures defining an interior space, a plurality of power taps, a plurality of coolant supply taps, and a plurality of coolant return taps. A flow capacity of the supply taps and a flow capacity of the return taps can be approximately equal over a local area of the interior space. The plurality of power taps, the plurality of supply taps, and the plurality of return taps can be divided into a plurality of zones, with taps of each zone are configured to be controllably coupled to a power source or a coolant source independently of the taps of other zones. The taps can be positioned along paths, and paths of the power taps can be spaced from associated proximate paths of supply and return taps by a substantially uniform distance along a substantial length of the first path.
Abstract:
A case for a liquid submersion cooled computer includes a plurality of walls defining a liquid-tight interior space. At least a portion of one of the walls is made of a material that permits viewing of objects, for example, a motherboard, within the interior space. A removable lid closes the top of the interior space. The lid forms a liquid-tight seal with the plurality of walls, and the lid includes a sealed electrical connector fixed thereto that is configured to attach to the motherboard disposed in the interior space and to provide electrical connection between the motherboard and an exterior of the case. The case can include a drain valve for draining liquid from the case. Further, the lid can have an opening for introducing liquid into the interior space, and a handle to facilitate lifting of the lid along with the motherboard connected to the lid.
Abstract:
Rack assemblies and methods for cooling one or more rack-based computer systems, as well as data center configurations that utilize the rack assembly. The rack assembly comprises a rack providing support for multiple columns of heat-generating electronic devices and device fans for moving air from an air inlet side of the rack through the devices and through an air outlet side of the rack. The rack assembly also comprises a unitary door having a support frame spanning the air outlet side of the rack and hingedly coupling the door to a rear vertical edge of the rack. The door includes an air-to-liquid heat exchanger panel spanning an air outlet passage inside the support frame so that substantially all of the air passing through the air outlet must pass through the heat exchanger panel. The air outlet passage has a cross-sectional area that is substantially equal to or greater than the cross-sectional area of the multiple columns of heat-generating devices.
Abstract:
The invention provides a technique enabling an image of high quality to be displayed while decreasing an effect of an outside light proceeding toward a back surface of PDP through a through hole for mounting an electric circuit on a chassis. A flat panel display of the invention includes a display panel, a metallic chassis having a through hole and joints for connecting the back surface of the display panel and the chassis to each other. The joints are on the back surface of the display panel distant from each other in a predetermined direction, and one of the joints is arranged at a position corresponding to the through hole of the chassis.
Abstract:
A liquid cooling heat dissipating device with heat tubes gathering heat sources includes a cold plate being disposed on the heat sources and a or a plurality of heat tubes disposed between the heat sources and the cold plate to contact with the heat sources completely, and an end of the respective heat tube is fixedly attached to the cold plate, respectively. The respective heat tube is sealed with a capillary material and a vapor-liquid working median contained inside. The respective heat tube contacts with the heat sources at different spots to gather the heat for being cooled with the cold plate simply.
Abstract:
According to one embodiment, an electronic apparatus includes a semiconductor package including a resin substrate and a die mounted on the resin substrate, a printed circuit board on which the semiconductor package is mounted, and a heat receiving plate that has an area larger than an area of the die. The heat receiving plate has a concave portion that corresponds to a surface of the die at a normal temperature. The concave portion is provided with a pasty heat conductive agent. The heat receiving plate is thermally connected to the semiconductor package via the pasty heat conductive agent.
Abstract:
The present invention represents a significant advancement in the field of cooling systems for computer hardware. One embodiment of a system for cooling a heat-generating device includes a housing sized to fit within a drive bay of a computing device, a heat exchanger disposed within the housing and configured to transfer heat from liquid to air, a fan disposed within the housing and configured to force air through the heat exchanger, and a pump disposed within the housing and configured to circulate a liquid through a cold plate sub-assembly and back to the heat exchanger. The cold plate sub-assembly is configured to be thermally coupled to the heat-generating device. The disclosed system may be advantageously disposed in any computing device whose chassis has a standard-sized drive bay, thereby enabling the system to be easily implemented across a wide variety of computing devices.
Abstract:
A small and lightweight phase conversion cooler having high cooling efficiency and mobile equipment. The phase conversion cooler has a cooling head having a first side in contact with a cooled object, a first circular port provided in a second side, a second circular port provided in a third side, a first pipe connected to the first circular port, a condenser part placed in a heat dissipation environment and a second pipe connected to the second circular port. The cooling head is formed by resin molding. The first side of the cooling head is provided with a metal plate.
Abstract:
Rack assemblies and methods for cooling one or more rack-based computer systems, as well as data center configurations that utilize the rack assembly. The rack assembly comprises a rack providing support for multiple columns of heat-generating electronic devices and device fans for moving air from an air inlet side of the rack through the devices and through an air outlet side of the rack. The rack assembly also comprises a unitary door having a support frame spanning the air outlet side of the rack and hingedly coupling the door to a rear vertical edge of the rack. The door includes an air-to-liquid heat exchanger panel spanning an air outlet passage inside the support frame so that substantially all of the air passing through the air outlet must pass through the heat exchanger panel. The air outlet passage has a cross-sectional area that is substantially equal to or greater than the cross-sectional area of the multiple columns of heat-generating devices.