Abstract:
An image controller structured for allowing inputs to be converted or translated into electrical outputs, one preferred controller structured with at least a sufficient number of sensors to aid in controlling three-dimensional objects and navigating a three-dimensional viewpoint shown by a display. A rotatable platform with a plurality of pressure sensors is used. An active tactile feedback motor is mounted as a component of the controller for providing vibration to be felt by a user.
Abstract:
Methods of interacting with image controllers structured for allowing inputs to be converted or translated into electrical outputs, one preferred controller structured with at least a sufficient number of sensors to aid in controlling three-dimensional objects and navigating a three-dimensional viewpoint shown by a display. An active tactile feedback vibrator is mounted as a component of the controller for providing vibration to be felt by a user. Some preferred embodiments also incorporate proportional sensors allowing user variable inputs to cause imagery to be variably controlled.
Abstract:
A thermal treatment system for thermally treating a sterile medium is controlled via a foot actuated switch to thermally treat the sterile medium to a desired temperature and/or form (e.g., slush). The thermal treatment system includes a basin recessed in a system top surface, while a surgical sterile drape is placed over the system and within the basin to form a drape container for containing the sterile medium. The basin may be configured to cool the sterile medium and form sterile surgical slush, or heat the sterile medium to provide warm sterile liquid. A dislodgment mechanism may be employed within a cooling basin to manipulate the drape and dislodge frozen pieces of sterile medium adhered to the drape. Information pertaining to the sterile medium and system operation may be displayed on a system display that has dimensions sufficient to provide visibility of the information to users located within extended ranges from the system. Alternatively, the thermal treatment system may be responsive to a remote control unit to enable users to control operation of the system remotely. The remote control unit may control various operating parameters and features of the system, and preferably emits system commands in the form of code signals. A receiver is employed by the thermal treatment system to receive the transmitted signals and facilitate system operation in response to those signals. In addition, the foot actuated switch and remote control unit may be utilized with thermal treatment systems having a plurality of heating and/or cooling basins.
Abstract:
A flexible data input device including a first textile layer and a second textile layer, which are arranged spaced apart from each other by a spacer. The spacer includes apertures delimiting the active zones of the data input device. The two textile layers are electroconductive in the active zones and a material with pressure-variable resistance is applied in the active zones, at least on one of the textile layers.
Abstract:
A fingertip tactile sense input device for a personal digital assistant capable of various input operations produced by a moving fingertip over projections recognized by the fingertip tactile sense. An input plate has a plurality of fingertip input projections and input control means that encodes an input signal when a projection is depressed. A fingertip can be moved over the input plate with the wrists fixed. The projections are disposed within a surface area outlined by an inverted generally egg-shaped curve C1 or C2, which is usable equally by the index fingertip of either hand.
Abstract:
An input device includes a keytop, an elastic member, a movable electrode and a fixed electrode. The movable electrode is coupled to the elastic member above the fixed electrode. The electrodes are enclosed within a recess. A resistance of one of the fixed or movable electrodes changes when the electrodes are in contact based on a pressure exerted on the keytop.
Abstract:
A pressure sensing switch which prevents the crack and damage when a stress is applied. The pressure-sensing switch extended in an X-Y-direction includes pressure sensing portions arranged in an X-direction and connection portion provided between the pressure sensing portions for connecting the pressure sensing portions. The connection portion includes a straight portion extended in X-direction and a straight portion formed by inverting both ends of the straight portion. The straight portion is deformed in a Y-direction for connecting to the pressure sensing portions.
Abstract:
In a pressure sensor, a first electrode is formed on a base plate. A insulating laminate material coats the first electrode. A conductive rubber is attached on a click rubber. The conductive rubber is brought into a pressure contact with the first electrode coated with the insulating laminate material.
Abstract:
A pressure activated electrically conductive polymeric matrix material that is doped with particulate filler material. Electrical conductivity is pressure activated with a change in electrical resistance; specifically, with no pressure applied, the material is at a high resistance and with pressure the resistance is materially lower. Conductive fillers may be spherical or powder substrate, such as glass, graphite, etc., having plated thereon a metal coating which is electrically conductive and which is more thermally conductive than the substrate. The polymeric matrix materials may include polyurethane, silicone, and many other synthetic or natural rubbers. The material of the present invention exhibits a unique on-off switching characteristic, in that, at a pressure smaller than actuation pressure, the amount of current the material can switch is zero; at pressure greater or equal to actuation pressure, the material switches the full current, with no material change in the overall temperature of the material. This translates into a very sharp decrease in the electrical resistance of the material with little or no detectable increase in the overall temperature of the material. The material also exhibits a latching function, in that, when the material is under pressure, current drops immediately to zero or a few milliamperes when the continuous current flowing through the material exceeds its maximum continuous current flow value with no material change in the overall temperature of the material. The differences in electrical and thermal conductivity of the metal coating and the substrate and the small contact areas between conductive spheres or powder particles are believed to be the physical bases of the on-off switching and latching characteristics.
Abstract:
An analog sensor depressible by a single human finger/thumb. Depressive force is applied to a dome-cap and to structuring capable of defining analog output of the sensor responsive to varying force applied by a single finger or thumb. Depressive force causes the dome-cap to bow downward passing through a user discernable threshold, causing a snap-through tactile sensation. The analog sensor is further taught in combination with additional sensors and tactile feedback structures, for example, sensors such as rotary potentiometers and the tactile feedback structure of an electric motor rotating an offset weight.