Abstract:
Methods and systems of fabricating a polymeric stent are disclosed herein. Methods are disclosed that include forming a polymeric tube using extrusion, radially deforming the formed tube so that the deformed tube comprises a target diameter, forming a stent from the deformed tube, and forming a stent from the deformed tube. The stent is formed by laser machining a stent pattern in the deformed tube with an ultra-short pulse laser. Disclosed methods further include crimping the stent on a support element, wherein a temperature of the stent during crimping is above an ambient temperature.
Abstract:
The present invention provides electrically conductive paper composites prepared from cellulose fibers modified to bind a conducting polymer to a surface of the cellulose fibers and mixing these with unmodified cellulose fibers and forming paper products from the composite. Conducting paper composites so formed were investigated for their conductivity and strength properties as a function of monomer dosage or percentage of modified fibers in the mixture and for the composites it was found that less monomer (i.e. conductive polymer) was needed to achieve the same conductivity obtained from conducting paper made from only the modified cellulose. A higher tensile strength was obtained with the composite conducting paper than was attained with conducting paper made from only the modified cellulose. The electrically conductive paper composites may also be prepared from cellulose fibers mixed with particulate fillers modified to bind a conducting polymer to a surface of the particulate fillers.
Abstract:
The present invention provides a transmission method for reducing radio resource overhead for a slave device of the Bluetooth system. The transmission method includes the steps of setting an active time slot window on a communication time comprising at least a reception time slot and transforming the reception time slots in the active time slot window into transmission time slots.
Abstract:
A backlit touch button assembly includes a circuit board, one or more light sources, a reflecting plate, and a marked strip. The light sources are positioned on the circuit board. The reflecting plate and the marked strip are attached to opposite sides of the circuit board. The reflecting plate defines one or more optical grooves receiving the light sources. Each optical groove has a reflecting portion. The circuit board defines one or more through holes adjacent to the light sources and corresponding to the reflecting portion of the optical grooves. The reflecting portion has a first reflecting surface, a second reflecting surface, and a third reflecting surface. The first reflecting surface and the third reflecting surface meet the second reflecting surface, respectively, at an angle.
Abstract:
A method for forming an integrated circuit is provided. The method includes forming a gate dielectric structure over a substrate. A titanium-containing sacrificial layer is formed, contacting the gate dielectric structure. The whole titanium-containing sacrificial layer is substantially removed.
Abstract:
A process using oxide supporter for manufacturing a capacitor lower electrode of a micron stacked DRAM is disclosed. First, form a stacked structure. Second, form a photoresist layer on an upper oxide layer and then etch them. Third, deposit a polysilicon layer onto the upper oxide layer and the nitride layer. Fourth, deposit a nitrogen oxide layer on the polysilicon layer and the upper oxide layer. Sixth, partially etch the nitrogen oxide layer, the polysilicon layer and the upper oxide layer to form a plurality of vias. Seventh, oxidize the polysilicon layer to form a plurality of silicon dioxides surround the vias. Eighth, etch the nitride layer, the dielectric layer and the lower oxide layer beneath the vias. Ninth, form a metal plate and a capacitor lower electrode in each of the vias. Tenth, etch the nitrogen oxide layer, the polysilicon layer, the nitride layer and the dielectric layer.
Abstract:
A manufacturing method for double-side capacitor of stack DRAM has steps of: forming a sacrificial structure in the isolating trench and the capacitor trenches; forming a first covering layer and a second covering layer on the sacrificial structure; modifying a part of the second covering layer; removing the un-modified second covering layer and the first covering layer to expose the sacrificial structure; removing the exposed part of the sacrificial structure to expose the electrode layer; removing the exposed electrode layer to expose the oxide layer; and removing the oxide layer and sacrificial structure to form the double-side capacitors.
Abstract:
A formulation for generating an adhesion barrier that includes a plurality of particles or a dry powder that is made of a polymer combination of at least one biodegradable polymer and at least one water soluble polymer is disclosed. Methods of making and delivering the formulation are further disclosed. The formulation of particles is deposited on a surface of internal body tissue and the deposited formulation absorbs moisture from the tissue and forms a film over the surface. The film acts as an adhesion barrier by reducing or preventing adhesion of the surface to other body tissue.
Abstract:
A method for crimping a stent onto a balloon includes inflating a balloon with a fluid, sliding a stent over the inflated balloon, crimping the stent onto the balloon, and controlling the pressure inside the balloon below a given value when the stent is being crimped onto the balloon.