Abstract:
A polarization combiner includes: a base member that includes a body portion, an arm portion extending from the body portion, and a notch portion surrounded with the body portion and the arm portion; a polarization rotating element that is fixed to the arm portion of the base member and that rotates a polarization direction of a first polarized wave; and a polarization combining element that is fixed to the base member so as to face the notch portion of the base member and the polarization rotating element, the polarization combining element combining two polarized waves entering from a surface facing the notch portion and the polarization rotating element, the two polarized waves including the first polarized wave whose polarization direction is rotated by the polarization rotating element and a second polarized wave passing the notch portion.
Abstract:
An optical module includes a wiring board on which a first opening and a second opening are provided having, between the first and second openings, a traversing portion on which a signal wire is arranged, an optical component that is mounted on a first plane side of the first opening and the second opening of the wiring board and that generates heat, a heat sink arranged on a second plane side, which is on a reverse of the first plane side, of the first opening and the second opening of the wiring board, and an anisotropic heat dissipation sheet that is provided between the traversing portion and the heat sink, and the optical component, and that has a thermal conductivity higher in second directions, which cross the traversing portion in a plane orthogonal to first directions, than in the first directions, which are thickness directions of the wiring board.
Abstract:
An optical modulator includes: a substrate that having an optical waveguide that includes a split section that splits light into two light waves, a pair of arms through which the light waves propagate, and a combining section that combines the light waves from the pair of arms with each other; and an electrode that overlaps part of the optical waveguide and generates an electric field by a voltage applied to the electrode. The optical waveguide has a narrow portion that is narrower than another portion of the optical waveguide and is arranged so that the electrode does not overlap with the narrow portion.
Abstract:
An optical module includes a waveguide substrate having an optical waveguide and electrodes that apply electronic signals to the optical waveguide; a relay substrate disposed adjacently to the waveguide substrate; and a termination substrate disposed sandwiching the waveguide substrate with the relay substrate. The electrodes respectively have a first wiring portion connected from the relay substrate through the waveguide substrate to the termination substrate and a second wiring portion extending from the first wiring portion and branching on the termination substrate. In the second wiring portion, one branched wiring portion has a capacitor and a termination resistor, and another branched wiring portion extends through a bias resistor to a DC electrode on the relay substrate. The second wiring portion is divided into a first group extending in a first direction along the optical waveguide and a second group extending in a direction opposite to the first direction.
Abstract:
An optical device includes a substrate having an electrooptical effect, and including an optical waveguide that guides light and a reflection groove having a bottom face that reflects light output from the optical waveguide; and a light-receiving element positioned above the reflection groove and fixed to the substrate. The light output from the optical waveguide into the reflection groove is reflected by the bottom face of the reflection groove while traveling through a space inside the reflection groove and is incident to the light-receiving element.
Abstract:
An optical modulator includes: a substrate that has electrooptical effect and has a Mach-Zehnder modulator that has a 2×2 coupler acting as a splitter, two intermediate waveguides coupled to outputting waveguides of the splitter and another 2×2 coupler acting as a combiner coupled to the two intermediate waveguides; and a suppresser that suppresses a power of an output light from an uncoupled waveguide and an input light into the uncoupled waveguide of at least one of the 2×2 couplers in an extending direction of the Mach-Zehnder modulator.
Abstract:
An optical receiver includes a first discriminator in which an optimal point of a slice level is set and that compares a received signal to the slice level and discriminately outputs the received signal; a second discriminator that is connected in parallel to the first discriminator, compares the received signal to a slice level, and discriminately outputs the received signal; and a computing device that variably controls the slice level of the first and the second discriminators, respectively. The computing device executes a first process of setting the slice level of the first discriminator to be a predetermined slice level, calculating a pseudo error rate obtained when the slice level of the second discriminator is caused to variably scan, and setting the slice level of the first discriminator within a range in which the error rate does not vary.
Abstract:
A method of controlling a temperature of a semiconductor laser includes: controlling a supply current so that a temperature of a temperature control element is changed to a target temperature, the temperature control element controlling a temperature of the semiconductor laser by a temperature changing according to the supply current supplied to the temperature control element; and performing a control for maintaining a calculated value calculated by a digital filter at a threshold when it is detected that the calculated value reaches the threshold, the calculated value being the supply current for achieving the target temperature, the threshold being equal to or less than an output limit of the digital filter.
Abstract:
An optical communication system includes an optical transmitter, and an optical receiver connected via a transmission line to the optical transmitter, in which system the optical transmitter transmits a continuous-wave light signal that enables beat detection when combined with a local oscillator signal in the optical receiver, and the optical receiver acquires a beat waveform through digital sampling by detecting the light signal using the local oscillator signal, performs frequency analysis on digitally sampled data having the beat waveform prior to demodulation, and controls the local oscillator frequency based upon the beat frequency.
Abstract:
An optical module includes a rotating bail disposed on a front part of a case that is inserted into and removed from a cage; a slide plate that slides along a longitudinal direction of the case in conjunction with rotation of the bail; and an engagement member is disposed on the slide plate, freely engages with an engagement member of the cage, and is released from an engaged state by a sliding of the slide plate in conjunction with the rotation of the bail. The bail and the slide plate are formed by an integrated metal plate in a folded state.