Abstract:
A hearing assistance system for delivering sounds to a listener provides for subjective, listener-driven programming of a hearing assistance device, such as a hearing aid, using a perceptual model. The system produces a distribution of presets using a perceptual model selected for the listener and allows the listener to navigate through the distribution to adjust parameters of a signal processing algorithm for processing the sounds. The use of the perceptual model increases the potential of fine tuning of the hearing assistance device available to the listener.
Abstract:
An antenna configured in a hybrid circuit provides a compact design for a hearing aid to communicate wirelessly with a system external to the hearing aid. In an embodiment, an antenna includes metallic traces in a hybrid circuit that is configured for use in a hearing aid. The antenna includes contacts in the hybrid circuit to couple the metallic traces to electronic devices in the hybrid circuit. In an embodiment, the metallic traces form a planar coil design having a number of turns of the coil in a substrate in the hybrid circuit. In another embodiment, the metallic traces are included in a flex circuit on a substrate in the hybrid circuit. An antenna configured in a hybrid circuit allows for use in a completely-in-the-canal hearing aid.
Abstract:
Method and apparatus for entrainment containment in digital filters using output phase modulation. Phase change is gradually introduced into the acoustic feedback canceller loop to avoid entrainment of the feedback canceller filter. Various embodiments employing different output phase modulation approaches are set forth and time and frequency domain examples are provided. Additional method and apparatus can be found in the specification and as provided by the attached claims and their equivalents.
Abstract:
Disclosed herein, among other things, are methods and apparatus for allocating feedback cancellation resources for improved acoustic feedback cancellation for hearing assistance devices. In various embodiments, a hearing assistance device includes a microphone and a processor configured to receive signals from the microphone and process them according to a plurality of processing blocks. The processor is adapted to include an event detector that can provide detection of an event and an output to adjust one or more processing blocks of the overall process to more efficiently use resources of the processor for the event detected, in various embodiments.
Abstract:
Ear-level full duplex audio communication systems each include one or two ear attachment devices, such as in-the-ear (ITE) or behind-the-ear (BTE) devices, that wirelessly communicates to a remote device such as a computer, a personal digital assistant (PDA), a cellular phone, a walkie talkie, or a language translator. When used as a hearing aid, such a system allows a hearing impaired individual to communicate with or through the remote device, such as to talk to another person through a cellular phone. When being used as an ear piece wirelessly extended from the remote device, such system allows an individual with normal hearing to privately communicate with or through the remote device without the need of holding the device or wearing any device wired to the remote device. Each ear attachment device includes a voice operated exchange (VOX), housed within the device, to preserve energy and hence, maximize the period between battery replacement or recharges. The VOX also gates various sounds detected by the system to control possible echoes and ringing.
Abstract:
An embodiment of a hearing assistance device comprises a housing, a power source, a radio circuit, an antenna and a transmission line. The radio circuit is within the housing and electrically connected to the power source. The antenna has an aperture, and the radio circuit is at least substantially within the aperture. The transmission line electrically connects to the antenna to the radio circuit. Various antenna embodiments include a flex circuit antenna.
Abstract:
The present subject matter relates to method and apparatus for processing sound by a hearing assistance device. In one example, the present subject matter is an apparatus for processing sound for a hearing assistance device, comprising: a microphone adapted for reception of the sound and to create a sound signal relating to the sound; a transducer that produces an output voltage related to motion; a signal processor, connected to the microphone and the transducer, the signal processor adapted to process the sound signal and the output voltage, the signal processor performing a vibration detection algorithm adapted to adjust hearing assistance device settings for a detected activity; and a housing adapted to house the signal processor.
Abstract:
A hearing assistance system streams audio signals from one or more streaming sources to a hearing aid set and enhances the audio signals such that the output sounds transmitted to the hearing aid wearer include a spatialization effect allowing for localization of each of the one more streaming sources. The system determines the position of the hearing aid set relative to each streaming source in real time and introduces the spatialization effect for that streaming source dynamically based on the determined position, such that the hearing aid wearer can experience a natural feeing of the acoustic environment.
Abstract:
Disclosed herein, among other things, are methods and apparatuses for integration of hearing aids with an MSD to improve intelligibility in noisy environments. One aspect of the present subject matter relates to a method of providing voice audio to a hearing aid or text in a hearing aid user's field of view, where the voice audio or text corresponds to a speaker of interest within a noisy environment, and where the speaker of interest is identified using smart glasses. An MSD graphical user interface is provided for a hearing aid user to identify a speaker of interest. The lip movement patterns of the speaker of interest are recorded by the smart glasses, and voice activity detection is performed on the lip movement patterns. Noise reduction is performed using the results of the voice activity detection. The noise-reduced voice audio may be transmitted to the hearing aid, or the speech recognition text may be transmitted to and displayed on the MSD.
Abstract:
Described herein is a technique by which a hearing may automatically switch between a directional microphone mode and an omnidirectional microphone mode base upon an estimate of the noise floor as derived from the input signal. A minimum statistics estimator may be used to estimate the noise floor.