Abstract:
According to the present invention, a chemical installation is provided. The chemical installation comprises A first unit for providing a first aqueous waste stream comprising nitrobenzene; At least a second unit for providing a second aqueous waste stream comprising aniline. The chemical installation comprises an aniline cleaning apparatus for removing nitrobenzene from aniline, and further comprising a stripping column for stripping aniline from an aqueous stream. The first and second aqueous waste stream are provided to the stripping column, stripping aniline and nitrobenzene from the first and the aqueous waste stream, and the stripped aniline and nitrobenzene is provided to the aniline cleaning apparatus.
Abstract:
Disclosed are a process and apparatus for synthesizing nitroalkanes by reaction of a hydrocarbon feedstock with aqueous nitric acid. Energy and capital costs may be reduced by using a dividing wall column.
Abstract:
Provided is a process for the formation of nitrated compounds by the nitration of hydrocarbon compounds with dilute nitric acid. Also provided are processes for preparing industrially useful downstream derivatives of the nitrated compounds, as well as novel nitrated compounds and derivatives, and methods of using the derivatives in various applications.
Abstract:
The invention relates to a continuous process for the manufacture of nitrobenzene. This process comprises the nitration of benzene with nitrating acid that contains at least 3.0 wt. % of nitric acid and at least 67.0 wt. % of sulfuric acid, in a reaction space in which the start temperature of the reaction is above 100.0° C. but below 102.0° C. In addition, this process requires that the benzene and the nitrating acid are dispersed in one another several times.
Abstract:
An improved process is provided for the preparation of 2,6-dihalo-3,5-dinitrotoluene by the nitration of 2,6-dihalotoluene. The direct isolation of highly pure 2,6-dihalo-3,5-dinitrotoluene is accomplished without a water or ice quench, by providing at least one equivalent of SO3 during the reaction, slow crystallization, and isolation of product from a cold crystal slurry.
Abstract:
An integrated process is provided for preparing complexes of 2,3,5,6-tetraminotoluene with an aromatic diacid starting with nitration of 2,6-dihalotoluene. The process design eliminates costly intermediate drying and recrystallization steps. Handling of solid materials with possible skin sensitizing properties and toxicity is avoided, thereby eliminating human and environmental exposure.
Abstract:
Methods of nitrating compounds, such as phloroglucinol or a methoxy derivative thereof, are disclosed. For example, a reaction mixture may be formed by combining sulfuric acid and at least one nitrate salt. A nitratable aromatic compound, such as phloroglucinol or a methoxy derivative thereof, may then be exposed to the reaction mixture to nitrate the phloroglucinol or methoxy derivative thereof.
Abstract:
The invention relates to a continuous process for the manufacture of nitrobenzene. This process comprises the nitration of benzene with nitrating acid that contains at least 3.0 wt. % of nitric acid and at least 67.0 wt. % of sulfuric acid, in a reaction space in which the start temperature of the reaction is above 100.0° C. but below 102.0° C. In addition, this process requires that the benzene and the nitrating acid are dispersed in one another several times.
Abstract:
Nitrobenzene is produced and then purified using an acidic wash, an alkaline wash, a neutral wash, subjecting a dispersion formed in the neutral wash to electrophoresis to separate water and benzene from the nitrobenzene and recover purified nitrobenzene.
Abstract:
Nitrobenzene is produced and then purified using an acidic wash, an alkaline wash, a neutral wash, subjecting a dispersion formed in the neutral wash to electrophoresis to separate water and benzene from the nitrobenzene and recover purified nitrobenzene.