Abstract:
A process for pretreating a lignocellulosic plant raw material in order to obtain a pretreated material that is capable of being hydrolyzed and fermented for the production of bioethanol, includes the following successive steps: (i) destructuring the lignocellulosic plant raw material by placing it in the presence of a mixture containing formic acid and water, at a reaction temperature between 95° C. and 110° C.; (ii) then, at atmospheric pressure and prior to any hydrolysis then fermentation action, separating: on the one hand, the solid phase, mainly composed of the cellulose, constituting a first co-substrate, capable of then being hydrolyzed and fermented for the production of bioethanol; and on the other hand, the liquid phase, containing, in particular in aqueous solution, the formic acid, the lignins, and the hemicelluloses, constituting a second co-substrate, capable of then being hydrolyzed and fermented for the production of bioethanol.
Abstract:
Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful products, such as fuels. For example, systems can use feedstock materials, such as cellulosic and/or lignocellulosic materials, to produce ethanol and/or butanol, e.g., by fermentation.
Abstract:
A process for producing bioethanol includes the steps of pretreatment (consisting in destructuring the lignocellulosic vegetable raw material by placing it in the presence of a mixture containing formic acid, acetic acid and water, then in separating cellulose), of enzymatic hydrolysis and of alcoholic fermentation, characterized in that it includes, prior to the enzymatic hydrolysis, a step of partial elimination of the lignins so as to obtain a residual overall level of lignins (T), expressed as percentage by weight, which is non-zero and which is included in a range determined by a lower limit, and an upper limit Bsup, respectively equal to 0.30% and 4%. In order to obtain conditions of acidification before the enzymatic hydrolysis step, the process includes a step for re-acidification of the mixture, which is carried out with an acid, or of a mixture of acids, of determined pKa, and preferably with weak organic.
Abstract:
The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
Abstract:
Biomass is pretreated using an organic solvent solution under alkaline conditions in the presence of ammonia and optionally an additional nucleophile to fragment and extract lignin without loss of hemicellulose. Pretreated biomass is further hydrolyzed with a saccharification enzyme consortium. Fermentable sugars released by saccharification may be utilized for the production of target chemicals by fermentation.
Abstract:
The present invention provides an apparatus and a method for conversion of cellulosic material, such as chopped straw and corn stover, and household waste, to ethanol and other products. The cellulosic material is subjected to continuous hydrothermal pre-treatment without addition of chemicals, and a liquid and a fiber fraction are produced. The fiber fraction is subjected to enzymatic liquefaction and saccharification. The method of the present invention comprises: performing the hydrothermal pre-treatment by subjecting the cellulosic material to at least one soaking operation, and conveying the cellulosic material through at least one pressurized reactor, and subjecting the cellulosic material to at least one pressing operation, creating a fiber fraction and a liquid fraction; selecting the temperature and residence time for the hydrothermal pretreatment, so that the fibrous structure of the feedstock is maintained and at least 80% of the lignin is maintained in the fiber fraction.
Abstract:
The present invention relates to a process for the conversion of a lignocellulosic feedstock involving acid pretreatment. The process comprises the steps of treating the lignocellulosic feedstock with alkali at a pH of between about 8.0 and about 12.0 so as to dissolve acetyl groups present on said lignocellulosic feedstock, while converting less than about 10% of the xylan present in the lignocellulosic feedstock to xylose and less than about 10% of the cellulose to glucose, thereby producing an alkali conditioned feedstock. The alkali conditioned feedstock is then pretreated at a temperature of about 160° C. to about 250° C., at a pH of about 0.5 to about 2.5 for about 0.5 to about 10 minutes so as to hydrolyze about 80 to 100% of the xylan and about 3 to about 15% of the cellulose to produce an acid pretreated feedstock comprising cellulose. The cellulose in the pretreated feedstock can be hydrolyzed to glucose with cellulase and the glucose can be fermented to produce a fermentation product.
Abstract:
A method and apparatus for pre-treating a cellulosic feedstock are disclosed. Embodiments of the method comprise conveying the cellulosic feedstock through an enclosed volume, adding moisture to the cellulosic feedstock simultaneously at multiple spaced-apart moisture injection points as the cellulosic feedstock travels through the volume, and heating the cellulosic feedstock as it travels through the volume to obtain a heated moistened feedstock. Embodiments of the apparatus comprise a shell defining a treatment chamber having a lower inner surface. The treatment chamber has an inlet and an outlet spaced longitudinally apart from the inlet to define an axial length. A conveyance member is housed within the shell and is configured to sweep the lower inner surface. A plurality of injection ports are provided in at least one of the shell and the conveyance member.
Abstract:
Concentrated sugar solutions obtained from polysaccharide enriched biomass by contacting biomass with water and at least one nucleophilic base to produce a polysaccharide enriched biomass comprising a solid fraction and a liquid fraction and then contacting enriched biomass with a dilute mineral acid selected from the group consisting of sulfuric acid, phosphoric acid, hydrochloric acid, nitric acid, or a combination thereof, to produce an intermediate saccharification product, which is contacted with an enzyme consortium to produce a final saccharification product comprising fermentable sugars.