Abstract:
A composite conductive material includes at least graphene-like exfoliated from a graphite-based graphite carbon material and a conductive material dispersed in a base material. The graphite-based carbon material has a rhombohedral graphite layer (3R) and a hexagonal graphite layer (2H), wherein a Rate (3R) of the rhombohedral graphite layer (3R) and the hexagonal graphite layer (2H), based on an X-ray diffraction method, which is defined by following Equation 1 is 31% or more: Rate(3R)=P3/(P3+P4)×100 (Equation 1) wherein P3 is a peak intensity of a (101) plane of the rhombohedral graphite layer (3R) based on the X-ray diffraction method, and P4 is a peak intensity of a (101) plane of the hexagonal graphite layer (2H) based on the X-ray diffraction method.
Abstract:
There are provided graphene powder that may be mass-produced with high quality, an apparatus for producing graphene powder, a method for producing graphene powder, and a product using the graphene powder. A jet flow as a high speed jet stream of a liquid or a gas is output from a jet flow output unit, and a raw material containing graphite and the jet flow thus output from the jet flow output unit are made to inflow to an input part of a chamber to cleave graphite, thereby outputting graphene powder in the form of fine particles of graphite from an output part. The graphene powder by the production method is formed simply by cleaving the raw material containing graphite with a jet flow, and thus may suffer no contamination due to the absence of contamination with other substances, and thus graphene having high purity and good quality in the form of fine particles may be obtained.
Abstract:
Provided is a graphite-based carbon material useful as a graphene precursor, from which graphene is easily exfoliated when the graphite-based carbon material is useful as a precursor and from which a highly-concentrated graphene dispersion can easily be obtained. The graphite-based carbon material is a graphite-based carbon material useful as a graphene precursor wherein a Rate (3R) based on an X-ray diffraction method, which is defined by following Equation 1 is 31% or more: Rate (3R)=P3/(P3+P4)×100 Equation 1 wherein P3 is a peak intensity of a (101) plane of the rhombohedral graphite layer (3R) based on the X-ray diffraction method, and P4 is a peak intensity of a (101) plane of the hexagonal graphite layer (2H) based on the X-ray diffraction method.