Abstract:
The present invention discloses a touch panel apparatus, system and an operation method using for the same system. The apparatus recognizes a track of an object for executing a corresponding gesture function, and it includes: a touch control surface for the object to move on or above to form the track; at least one image sensor for capturing a plurality of continuous pictures including images of the object; and a processor for obtaining a plurality of displacement vectors according to changes in positions of the images of the object, comparing the displacement vectors with a set of basic vectors to obtain a code or a set of codes, and recognizing the code or the set of codes to execute the corresponding gesture function.
Abstract:
The present invention discloses a MEMS sensing device which comprises a substrate, a MEMS device region, a film, an adhesive layer, a cover, at least one opening, and a plurality of leads. The substrate has a first surface and a second surface opposite the first surface. The MEMS device region is on the first surface, and includes a chamber. The film is overlaid on the MEMS device region to seal the chamber as a sealed space. The cover is mounted on the MEMS device region and adhered by the adhesive layer. The opening is on the cover or the adhesive layer, allowing the pressure of the air outside the device to pressure the film. The leads are electrically connected to the MEMS device region, and extend to the second surface.
Abstract:
The present invention discloses a game doll recognition system, a recognition method, and a game system using the same. The game doll recognition system is capable of recognizing a plurality of game dolls; it includes: a data storage unit storing identification data of the game dolls; an image capturing unit capturing at least one picture of an game doll to be recognized; a processor comparing the identification data with at least a part of the picture to verify the identity of the game doll to be recognized in the picture; and a display unit showing the identity of the game doll to be recognized.
Abstract:
The present invention discloses a MEMS microphone device and its manufacturing method. The MEMS microphone device includes: a substrate including a first cavity; a MEMS device region above the substrate, wherein the MEMS device region includes a metal layer, a via layer, an insulating material region and a second cavity; a mask layer above the MEMS device region; a first lid having at least one opening communicating with the second cavity, the first lid being fixed above the mask layer; and a second lid fixed under the substrate.
Abstract:
The present invention discloses an optical displacement detection apparatus and an optical displacement detection method. The optical displacement detection apparatus comprises: at least two light sources for projecting light of different spectrums to a surface under detection, respectively; an image capturing device for receiving light reflected from the surface under detection and converting it into electronic signals; and a processing control circuit for calculating displacement according to the electronic signals from the image capturing device, wherein the processing control circuit is capable of switching between the light sources.
Abstract:
The present invention discloses a 3D information generator for use in an interactive interface. The 3D information generator includes: a MEMS light beam generator having at least one light source for providing a dot light beam and a MEMS mirror for projecting a movable scanning light beam according to the dot light beam to an object; an image sensor for sensing an image of the object to generate a 2D image information; and a processor for generating a distance information by triangulation method according to a reflection result of the scanning light beam scanning on the object, wherein the distance information is combined with the 2D image information to generate a 3D information.
Abstract:
The present invention discloses a MEMS (Micro-Electro-Mechanical System, MEMS) accelerator with enhanced structural strength. The MEMS accelerator is located on a substrate, and it includes: multiple springs, wherein each spring includes: an anchor, fixed on the substrate; an extensible part, which has a fixed end fixed on the anchor, and a free end floating above the substrate; a proof mass, connected to the free ends of the springs; and multiple in-plane sense electrodes, wherein the extensible part is folded back and forth to form a substantially polygon shape as a whole, in which the fixed end is located within the middle one third length of one side of the substantially polygon shape, and the free end is located within the middle one third length of an opposite side of the substantially polygon shape.
Abstract:
According to the present invention, an in-plane sensor comprises: a fixed structure including a fixed finger and a fixed column connected to each other, the fixed finger having a supported end supported by the fixed column and a suspended end which is unsupported; and a movable structure including at least one mass body and an extending finger connected to each other; wherein the supported end of the fixed finger is closer to the mass body than the suspended end is.
Abstract:
The present invention discloses an optical MEMS detector, comprising: a substrate; at least one photo diode in a region within the substrate; an isolation wall above the substrate and surrounding the photo diode region; and at least one movable part having an opening for light to pass through and reach the photo diode, wherein when the at least one movable part is moved, an amount of light reaching the photo diode is changed.
Abstract:
The present invention discloses a MEMS device with particles blocking function, and a method for making the MEMS device. The MEMS device comprises: a substrate on which is formed a MEMS device region; and a particles blocking layer deposited on the substrate.