Abstract:
The invention provides a bio-sensing nanodevice comprising: a stabilized biologically-derived G-protein coupled receptor—the olfactory receptor—on a support, a real time receptor-ligand binding detection method, an odorant delivery system and an odorant recognition program. The biologically-derived G-protein coupled receptor can be stabilized on nanotechnology using surfactant peptide. The said nanodevice provides a greater surface area for better precision and sensitivity to odorant detection. The invention further provides a microfluidic chip containing a stabilized biologically-derived G-protein coupled receptor—the olfactory receptor—immobilized on a support, and arranged in at least two dimensional microarray system. The invention also provides a method of delivering odorant comprising the step of manipulating the bubbles in complex microfluidic networks wherein the bubbles travel in a microfluidic channel carrying a variety of gas samples to a precise location on a chip. The invention further provides method of fabricating hOR17-4 olfactory receptor.
Abstract:
An imaging apparatus includes a printing mechanism having a media path. A print media source is provided for supplying a sheet of print media to the printing mechanism. A drive unit is provided, with a drive shaft coupled to the drive unit. A media sensor device is mounted to the drive shaft, wherein as the drive shaft is rotated in a first direction the media sensor device is moved from a first position that is out of the media path to a second position that is in the media path for sensing the sheet of print media. As the drive shaft is rotated in a second direction opposite to the first direction the media sensor device is moved from the second position that is in the media path for sensing the sheet of print media to the first position that is out of the media path.
Abstract:
Disclosed are substituted benzimidazole compounds of formula (I): wherein R1, R2, R3, R4 and Xa are defined herein. The compounds of the invention inhibit Itk kinase and are therefore useful for treating diseases and pathological conditions involving inflammation, immunological disorders and allergic disorders. Also disclosed are processes for preparing these compounds and to pharmaceutical compositions comprising these compounds.
Abstract:
A system for treating a vascular condition includes a catheter having an inner member and an outer member, the outer member concentrically arranged about the inner member and a retractable drug delivery device disposed at a distal end of the inner member. A coating disposed on at least a portion of an outer surface of the retractable drug delivery device includes at least one therapeutic agent.
Abstract:
An improved apparatus for thermally developing a flexographic printing element to reveal a relief image on the surface and a method of using the apparatus to develop a flexographic printing element. The apparatus typically comprises means for softening or melting a crosslinked photopolymer on the imaged and exposed surface of the flexographic printing element; at least one roll that is contactable with the imaged surface of the flexographic printing element and capable of moving over at least a portion of the imaged surface of the flexographic printing element to remove the softened or melted non-crosslinked photopolymer on the imaged and exposed surface of the flexographic printing element; and means for maintaining contact between the at least one roll and the imaged and exposed surface of the flexographic printing element. A layer of resilient compressible material is positioned between the flexographic printing element and a supporting conveying means. The means for softening or melting non-crosslinked photopolymer on the imaged and exposed surface of the flexographic printing element comprise a heater positioned adjacent to the imaged surface of the flexographic printing element and/or heating the at least one roll that contactable with the imaged surface of the flexographic printing element. The apparatus may also contain an exposure device to crosslink and cure the imaged surface of the flexographic printing element prior to thermal development.
Abstract:
Disclosed herein are controlled release drug delivery systems. The systems comprise a medical device at least one nonoporous surface, at least one bioactive agent and optionally a biodegradable polymer. The nanoporous surfaces of the medical devices contain nanopores capable of acting as reservoirs for drugs that are controllably released.
Abstract:
The present invention pertains to a process and an apparatus for treating a photosensitive element to form a relief structure suitable for flexographic printing plate. The apparatus comprises an enclosure, a conveyor, a heatable roller with absorbent material conducted over it, and a roller that can significantly smooth or uniformly roughen the relief structure of the flexographic printing plate. Previously selectively cured photosensitive elements are developed by means of the heatable roller by blotting with the absorbent material, and the resulting relief structure is made uniform by way of a smoothing or roughening roller. The flexographic plates produced by the method and apparatus are especially suited to processes that require substantially smoothed or uniformly roughened printing plate surfaces, which are capable of producing better quality printing.
Abstract:
Printer (1) has a pivotally mounted autocompensating system (19) mounted at an intermediate position in paper guide (17). That system (19) is driven by a motor (40) through a slip drive (70, 72, 74). The motor also drives paper feed system (15). When the motor turns in a direction to feed by system (15), the intermediate system is moved away from the paper guide. When a sheet reaches a position to be fed by the intermediate system, the motor is reversed, and the intermediate system pivots against the paper for moving it further through the paper guide.
Abstract:
Disclosed are compounds of formula(I): wherein Ar1, Ar2, R1, R2, R3, R4 and Xa are defined herein. The compounds of the invention inhibit Itk kinase and are therefore useful for treating diseases and pathological conditions involving inflammation, immunological disorders and allergic disorders. Also disclosed are processes for preparing these compounds and to pharmaceutical compositions comprising these compounds.
Abstract translation:公开了式(I)的化合物:其中Ar 1,Ar 2,R 1,R 2, R 3,R 4和X a a在本文中定义。 本发明的化合物抑制Itk激酶,因此可用于治疗涉及炎症,免疫学障碍和过敏性疾病的疾病和病理状况。 还公开了制备这些化合物的方法和包含这些化合物的药物组合物。
Abstract:
Multi-compartmentalized ink cartridges for ink jet printers and improved methods for making the ink cartridges. The multi-compartmentalized ink cartridge includes a molded, open-topped body having an interior cavity and a printhead surface area opposite the interior cavity. A divider wall is integrally molded with the molded body structure and disposed in the interior cavity to provide at least three segregated ink chambers. The divider wall includes a first wall section and a second wall section attached substantially perpendicular to the first wall section. At least first, second, third molded ink flow paths connect each of the at least three segregated ink chambers with the printhead surface area. The second and third ink flow paths are oriented relative to their corresponding ink chambers for molding with a mold insert tool so that the cartridge body does not require a separately attached member to close mold insert tool insertion areas in the body.