Abstract:
A semiconductor device includes a semiconductor substrate, at least a first fin structure, at least a second fin structure, a first gate, a second gate, a first source/drain region and a second source/drain region. The semiconductor substrate has at least a first active region to dispose the first fin structure and at least a second active region to dispose the second fin structure. The first/second fin structure partially overlapped by the first/second gate has a first/second stress, and the first stress and the second stress are different from each other. The first/second source/drain region is disposed in the first/second fin structure at two sides of the first/second gate.
Abstract:
A method for fabricating a semiconductor device is disclosed. The method includes the steps of: providing a substrate; forming a dielectric layer on the substrate, wherein the dielectric layer comprises metal interconnects therein; forming a top metal layer on the dielectric layer; and forming a passivation layer on the top metal layer through high-density plasma chemical vapor deposition (HDPCVD) process.
Abstract:
A manufacturing method of a molded image sensor packaging structure with a predetermined focal length and the structure using the same are disclosed. The manufacturing method includes: providing a substrate; providing a sensor chip disposed on the substrate; providing a lens module set over the sensing area of the chip to form a semi-finished component; providing a mold that has an upper mold member with a buffer layer; disposing the semi-finished component into the mold to form a mold cavity therebetween; injecting a molding compound into the mold cavity; and after transfer molding the molding compound, opening the mold and performing a post mold cure process to cure the molding compound. The buffer layer can fill the air gap between the upper surface of the lens module and the upper mold member, thereby preventing the upper surface of the lens module from being polluted by the molding compound.
Abstract:
A method of fabricating a metal gate structure is provided. Firstly, a high-K gate dielectric layer is formed on a semiconductor substrate. Then, a first metal-containing layer having a surface away from the gate dielectric layer is formed on the gate dielectric layer. After that, the surface of the first metal-containing layer is treated to improve the nitrogen content thereof of the surface. Subsequently, a silicon layer is formed on the first metal-containing layer. Because the silicon layer is formed on the surface having high nitrogen content, the catalyzing effect to the silicon layer resulted from the metal material in the first metal-containing layer can be prevented. As a result, the process yield is improved.
Abstract:
An exemplary method of etching an oxide layer and a nitride layer is provided. In particular, a substrate is provided. A surface of the substrate has an isolating structure projecting therefrom. A first oxide layer, a nitride layer and a second oxide layer are sequentially provided on the surface of the substrate, wherein the first oxide layer is uncovered on the isolating structure, the nitride layer is formed overlying the first oxide layer, and the second oxide layer is formed overlying the nitride layer. An isotropic etching process is performed by using an etching mask unmasking the isolating structure, and thereby removing the unmasked portion of the second oxide layer and the unmasked portion of the nitride layer and further exposing sidewalls of the isolating structure. The unmasked portion of the first oxide layer generally is partially removed due to over-etching.
Abstract:
An exemplary method of etching an oxide layer and a nitride layer is provided. In particular, a substrate is provided. A surface of the substrate has an isolating structure projecting therefrom. A first oxide layer, a nitride layer and a second oxide layer are sequentially provided on the surface of the substrate, wherein the first oxide layer is uncovered on the isolating structure, the nitride layer is formed overlying the first oxide layer, and the second oxide layer is formed overlying the nitride layer. An isotropic etching process is performed by using an etching mask unmasking the isolating structure, and thereby removing the unmasked portion of the second oxide layer and the unmasked portion of the nitride layer and further exposing sidewalls of the isolating structure. The unmasked portion of the first oxide layer generally is partially removed due to over-etching.
Abstract:
A method of forming a semiconductor structure having a metal gate. Firstly, a semiconductor substrate is provided. Subsequently, at least a gate structure is formed on the semiconductor substrate. Afterwards, a spacer structure is formed to surround the gate structure. Then, an interlayer dielectric is formed. Afterwards, a planarization process is performed for the interlayer dielectric. Then, a portion of the sacrificial layer is removed to form an initial etching depth, such that an opening is formed to expose a portion of the spacer structure. The portion of the spacer structure exposed to the opening is removed so as to broaden the opening. Afterwards, remove the sacrificial layer completely via the opening. Finally, a gate conductive layer is formed to fill the opening.
Abstract:
A method for fabricating a dual-damascene copper structure includes providing a semiconductor substrate having a dielectric layer thereon and a dual-damascene hole positioned in the dielectric layer, wherein a portion of the semiconductor substrate is exposed in the dual-damascene hole. A PVD process and an atomic CVD process are sequentially performed to form a substrate-protecting layer and a tantalum nitride layer in the dual-damascene hole. And then a copper layer is formed in the dual-damascene hole.
Abstract:
The present invention provides a non-planar FET which includes a substrate, a fin structure, a gate and a gate dielectric layer. The fin structure is disposed on the substrate. The fin structure includes a first portion adjacent to the substrate wherein the first portion shrinks towards a side of the substrate. The gate is disposed on the fin structure. The gate dielectric layer is disposed between the fin structure and the gate. The present invention further provides a method of manufacturing the non-planar FET.
Abstract:
A method for manufacturing a metal gate structure includes providing a substrate having a high-K gate dielectric layer and a bottom barrier layer sequentially formed thereon, forming a work function metal layer on the substrate, and performing an anneal treatment to the work function metal layer in-situ.