Abstract:
A diesel engine exhaust aftertreatment system including a DPF and a LNT in that order is operated with simultaneous soot combustion and LNT desulfation. When a control signal to desulfate the LNT is generated, the DPF is heated to ignite combustion of trapped soot. As the trapped soot is combusting in the DPF, reductant is injected downstream of the DPF, but upstream of the LNT at a rate that leaves the exhaust rich, whereby the LNT undergoes desulfation. Soot combustion reduces the fuel penalty for desulfation by removing oxygen from the exhaust. When a reformer is configured upstream of the LNT, soot combustion helps stabilize the reformer operation. In one embodiment, there are two fuel injectors; one upstream of the DPF and one between the DPF and the fuel reformer. Methods are provided for using this type of configuration to operate the reformer when the DPF is not being regenerated.
Abstract:
One of the inventors' concepts relates to a power generation system, comprising a diesel engine and an exhaust system. The exhaust system comprises a first oxidation catalyst, a fuel reformer, and a LNT. A fuel injector is configured to inject fuel downstream of the oxidation catalyst, but upstream of the reformer. Preferably, the first oxidation catalyst is located near the engine. The first oxidation catalyst can extend the range of exhaust temperatures at which the aftertreatment devices operate by raising the temperature through reactions with residual hydrocarbons in the exhaust. The first oxidation catalyst also stabilizes the reformer operation by reducing the exhaust oxygen concentration. In a preferred embodiment, the engine operation is changed for LNT regenerations to increase the hydrocarbon content of the exhaust.
Abstract:
A method is provided for operating a diesel engine exhaust aftertreatment system including a DPF and a LNT. The LNT is regenerated as soot is combusting in the DPF. To accomplish this, reductant is injected between the DPF and the LNT during soot combustion, whereby the LNT experiences rich conditions as the DPF experiences lean conditions. Preferably, the DPF is of small size whereby the DPF is heated easily and needs to be regenerated almost as often as the LNT needs to be denitrated. In an exemplary process, DPF regeneration begins in response to a control signal to denitrate the LNT. Preferably, the reductant is diesel fuel and there is a fuel reformer between the DPF and the LNT. Oxygen consumed by soot combustion reduces the fuel penalty for regenerating the LNT and promotes stable reformer operation. Heat generated in the DPF helps warm the fuel reformer.
Abstract:
One concept relates to power generation system, comprising a diesel engine, an exhaust manifold, a turbocharger, and an exhaust line in which are configured a fuel reformer and a LNT. A fuel injector is configured to inject fuel into the manifold upstream of the turbine. The high temperatures upstream of the turbine cause the fuel to crack into smaller molecules, releasing heat and providing a boost to the turbocharger. The fuel injected into the manifold also undergoes intense mixing as it passes through the turbocharger. Injecting fuel in this manner provides several benefits for reformer operation. Another concept relates to a manifold fuel injector used to provide fuel for heating a DPF.