Abstract:
Provided is a method for preparing a compound semiconductor substrate. The method includes coating a plurality of spherical balls on a substrate, growing a compound semiconductor epitaxial layer on the substrate coated with the spherical balls while allowing voids to be formed under the spherical balls, and cooling the substrate on which the compound semiconductor epitaxial layer is grown so that the substrate and the compound semiconductor epitaxial layer are self-separated along the voids. The spherical ball treatment can reduce dislocation generations. In addition, because the substrate and the compound semiconductor epitaxial layer are separated through the self-separation, there is no need for laser lift-off process.
Abstract:
The present invention relates to a nitride semiconductor substrate such as gallium nitride substrate and a method for manufacturing the same. The present invention forms a plurality of trenches on a lower surface of a base substrate that are configured to absorb or reduce stresses applied larger when growing a nitride semiconductor film on the base substrate from a central portion of the base substrate towards a peripheral portion. That is, the present invention forms the trenches on the lower surface of the base substrate such that pitches get smaller or widths or depths get larger from the central portion of the base substrate towards the peripheral portion.
Abstract:
Provided is a method for preparing a compound semiconductor substrate. The method includes coating a plurality of spherical balls on a substrate, growing a compound semiconductor epitaxial layer on the substrate coated with the spherical balls while allowing voids to be formed under the spherical balls, and cooling the substrate on which the compound semiconductor epitaxial layer is grown so that the substrate and the compound semiconductor epitaxial layer are self-separated along the voids. The spherical ball treatment can reduce dislocation generations. In addition, because the substrate and the compound semiconductor epitaxial layer are separated through the self-separation, there is no need for laser lift-off process.
Abstract:
The present invention relates to a method for manufacturing a gallium nitride single crystalline substrate, including (a) growing a gallium nitride film on a flat base substrate made of a material having a smaller coefficient of thermal expansion than gallium nitride and cooling the gallium nitride film to bend convex upwards the base substrate and the gallium nitride film and create cracks in the gallium nitride film; (b) growing a gallium nitride single crystalline layer on the crack-created gallium nitride film located on the convex upward base substrate; and (c) cooling a resultant product having the grown gallium nitride single crystalline layer to make the convex upward resultant product flat or bend convex downwards the convex upward resultant product and at the same time to self-split the base substrate and the gallium nitride single crystalline layer from each other at the crack-created gallium nitride film interposed therebetween.
Abstract:
The present invention provides to a gallium nitride (GaN) semiconductor and a method of manufacturing the same, capable of reducing crystal defects caused by a difference in lattice parameters, and minimizing internal residual stress. In particular, since a high-quality GaN thin film is formed on a silicon wafer, manufacturing costs can be reduced by securing high-quality wafers with a large diameter at a low price, and applicability to a variety of devices and circuit can also be improved.
Abstract:
A compound semiconductor device and method of manufacturing the same. The method includes coating a plurality of spherical balls on a substrate and selectively growing a compound semiconductor thin film on the substrate on which the spherical balls are coated. The entire process can be simplified and a high-quality compound semiconductor thin film can be grown in a short amount of time in comparison to an epitaxial lateral overgrowth (ELO) method.
Abstract:
Disclosed are a semiconductor device, a light emitting device and a method for manufacturing the same. The semiconductor device includes a substrate, a plurality of rods disposed on the substrate, a plurality of particles disposed between the rods and on the substrate, and a first semiconductor layer disposed on the rods. The method for manufacturing the semiconductor device includes preparing a substrate, disposing a plurality of first particles on the substrate, and forming a plurality of rods by etching a portion of the substrate by using the first particles as an etch mask. The semiconductor device effectively reflects in an upward direction light by the above particles, so that light efficiency is improved. The rods are easily formed by using the first particles.
Abstract:
Provided is a method for preparing a substrate for growing gallium nitride and a gallium nitride substrate. The method includes performing thermal cleaning on a surface of a silicon substrate, forming a silicon nitride (Si3N4) micro-mask on the surface of the silicon substrate in an in situ manner, and growing a gallium nitride layer through epitaxial lateral overgrowth (ELO) using an opening in the micro-mask. According to the method, by improving the typical ELO, it is possible to simplify the method for preparing the substrate for growing gallium nitride and the gallium nitride substrate and reduce process cost.
Abstract translation:提供一种制备用于生长氮化镓和氮化镓衬底的衬底的方法。 该方法包括在硅衬底的表面上进行热清洗,以原位方式在硅衬底的表面上形成氮化硅(Si 3 N 4)微掩模,并通过外延横向过度生长(ELO)生长氮化镓层, 在微面罩中使用开口。 根据该方法,通过改善典型的ELO,可以简化制备用于生长氮化镓和氮化镓衬底的衬底的方法,并降低工艺成本。
Abstract:
The present invention relates to a method for manufacturing a gallium nitride single crystalline substrate, including (a) growing a gallium nitride film on a flat base substrate made of a material having a smaller coefficient of thermal expansion than gallium nitride and cooling the gallium nitride film to bend convex upwards the base substrate and the gallium nitride film and create cracks in the gallium nitride film; (b) growing a gallium nitride single crystalline layer on the crack-created gallium nitride film located on the convex upward base substrate; and (c) cooling a resultant product having the grown gallium nitride single crystalline layer to make the convex upward resultant product flat or bend convex downwards the convex upward resultant product and at the same time to self-split the base substrate and the gallium nitride single crystalline layer from each other at the crack-created gallium nitride film interposed therebetween.
Abstract:
A compound semiconductor device and method of manufacturing the same. The method includes coating a plurality of spherical balls on a substrate and selectively growing a compound semiconductor thin film on the substrate on which the spherical balls are coated. The entire process can be simplified and a high-quality compound semiconductor thin film can be grown in a short amount of time in comparison to an epitaxial lateral overgrowth (ELO) method.