Abstract:
The present invention provides an optical fiber enabling signal transmission in a wider band, which is applicable to optical transmission not only in the 1.3 μm wavelength band but also in the 1.55 μm wavelength band, as a transmission medium of a WDM optical communication system capable of transmitting signal light of multiple channels. The optical fiber is comprised of silica glass and has a core region along a predetermined axis and a cladding region provided on the outer periphery of the core region. The optical fiber comprising such a structure has, as the following typical optical characteristics, a cable cutoff wavelength of 1260 nm or less, a transmission loss of 0.32 dB/km or less at the wavelength of 1310 nm, and an OH-related loss increase of 0.3 dB/km or less at the wavelength of 1380 nm.
Abstract:
A optical filter has a loss spectrum whose gradient dL/dλ of a loss L (dB) with respect to the wavelength λ (nm) is variable in the wavelength band of multiplexed signal light. A control circuit detects each power of signal light components demultiplexed by an optical coupler and controls the power of optical pumping light to be supplied to an optical amplification section from an optical pumping light sources such that the power of output signal light has a predetermined target value. The control circuit also controls the gradient dL/dλ of the optical filter on the basis of powers of the signal light components.
Abstract:
The present invention provides an optical fiber which has a hollow portion extending along the axis and which reduces degradation of the optical characteristics, and a production method thereof. An optical fiber includes a hollow core portion, and a cladding portion which surrounds the hollow core portion. The refractive index of the hollow core portion is lower than that of the cladding portion. The hollow core portion is closed at both ends of the optical fiber so as to form sealed portions. The sealed portions are formed by, for example, heating the optical fiber and softening the cladding portion. This prevents foreign material and the like from entering the hollow core portion. Ferrules of optical connectors are attached to both end faces of the optical fiber.
Abstract:
The present invention relates to a wide-band, low-loss, submarine optical cable excellent in productivity, an optical fiber unit employed in the submarine optical cable, and a method of making the optical fiber unit. The optical fiber unit employed in the submarine optical cable comprises a loose structure in which one or more coated optical fibers are accommodated together with a soft resin in a space formed within a plastic support. In particular, one or more compression members are embedded in the plastic support along the space accommodating the coated optical fibers. The compression members closely in contact with the plastic support prevents the shrinkage of the plastic support from occurring due to temperature changes before forming a cable utilizing the optical fiber unit. Preventing the shrinkage of the plastic support from occurring before forming the cable suppresses the increase in surplus length ratio of the accommodated coated optical fibers, thereby effectively restraining the transmission loss of the submarine optical cable from increasing due to the increase in surplus length ratio.
Abstract:
Disclosed are an optical transmission system and a Raman amplifying control unit that can stabilize the effective loss of a transmission line even if the optical transmission system has a relay station between a transmitting station and a receiving station. The optical transmission system and the Raman amplifying control unit have an introducing means for outputting inspection light and introducing it to the transmission line, a receiving means for receiving the back-scatter from the inspection light, and a control means for inspecting the transmission line and controlling an exciting light supplying means according to the received backscattering light. The introducing means, the receiving means, and the control means are provided together with the exciting light supplying means in a station at the transmitting side or receiving side of a relay section in the optical transmission system.
Abstract:
The present invention relates to an optical fiber having, at least, a structure for effectively restraining microbend loss from increasing. This optical fiber is an optical fiber suitable for a dispersion-flattened fiber, a dispersion-compensating fiber, and the like, and insured its single mode in a wavelength band in use. In particular, since the fiber diameter is 140 &mgr;m or more, this optical fiber has a high rigidity, so that the increase in microbend loss is effectively suppressed, whereas the probability of the optical fiber breaking due to bending stresses is practically unproblematic since the fiber diameter is 200 &mgr;m or less. Also, since this optical fiber has a larger mode field diameter, it lowers the optical energy density per unit cross-sectional area, thereby effectively restraining nonlinear optical phenomena from occurring.
Abstract:
The present invention relates to an operation mode switching apparatus comprising a structure for making it possible to minimize the waste of energy caused by troubles occurring in optical fiber lines and the like in order to efficiently utilize the energy consumed in an optical transmission system aimed for a long-term operation; a Raman amplifier including the operation mode switching apparatus; and an optical transmission system including the Raman amplifier. If an optical fiber line acting as an optical transmission medium breaks in the optical transmission system, the signal power detected from the optical fiber decreases, whereby it changes to a set value or less or the amount of decrease in signal power per unit time changes by a set value or more. The operation mode switching apparatus comprises a control section for monitoring such a change in signal power, thereby switching the pumping light supply operation from a communication mode to a wait mode for minimizing the waste of pumping energy in response to the occurrence of troubles.
Abstract:
The present invention relates to an optical transmission line enabling WDM communications in a wide signal light wavelength band centered at a wavelength of 1.55&mgr;m, in which nonlinear optical phenomena are less likely to occur; and an optical fiber constituting a part of the optical transmission line. The optical fiber has a dispersion D (unit:ps/nm/km) and a dispersion slope S (unit:ps/nm2/km) satisfying the conditions of −69≦D≦−35 and 0.0050×D≦5≦0.0025×D; and, as characteristics with respect to light having a wavelength of 1.55 &mgr;m an effective area of 15 &mgr;m2 or more and a bending loss of 50 dB/m or less when wound at a diameter of 20 mm.
Abstract:
This invention relates to an optical transmission line having a structure that reduces dispersion with respect to signal light in a 1.55-&mgr;m band. Each transmission unit includes a dispersion-shifted optical fiber as a transmission medium and a mode removing unit for reducing the optical power of high-order modes excluding a fundamental mode of light signals propagating through the dispersion-shifted optical fiber. The dispersion-shifted optical fiber has an incident terminal on which the light signals are incident and an exit terminal from which the light signals are emitted, and has a cutoff wavelength longer than the wavelength of the light signals at a fiber length of 2 m. The mode removing unit has a structure for reducing the optical power of high-order modes to 1/10 or less, preferably 1/40 or less, of the optical power of the fundamental mode so as to satisfy the single-mode condition in relation to fiber length.
Abstract:
This invention relates to an optical fiber having a structure that effectively reduces transmission loss and bending loss. An optical fiber according to this invention is an optical fiber mainly comprised of silica and including a core region and a cladding region covering the core region. The core region is doped with chlorine so as to have a refractive index higher than that of pure silica. The cladding region is doped with fluorine so as to have a refractive index lower than that of pure silica. The optical fiber, in particular, is characterized in that a peak value of a relative refractive index difference of the core region with respect to a refractive index of pure silica is 0.05% or more.