Abstract:
An electronic device may include a keypad having a plurality of predefined key areas and a light guide that may be used to illuminate the key areas. The light guide may include a capacitive sensing grid to sense user contact relative to the keypad.
Abstract:
An illuminated keypad is disclosed herein. And embodiment of the keypad comprises a first zone and a second zone; a substrate comprising a substrate surface; a first switch located on the substrate in the first zone; a first light guide having a first light guide first side and a first light guide second side, wherein the first light guide first side faces the first switch; a second light guide having a second light guide first side and a second light guide second side, wherein the second light guide first side faces the substrate surface; a masking layer having a masking layer first side and a masking layer second side, the masking layer first side facing the substrate surface; and at least one cut in the masking layer, wherein the masking layer blocks a light path between the light guides.
Abstract:
A light guide for an optical keypad is described. The light guide includes a light interface surface, top and bottom surfaces, a surface feature pattern, and a cut line. The light interface surface receives light into the light guide from a light source. The light received through the light interface surface reflects according to total internal reflection (TIR) within the light guide between portions of the top and bottom surfaces. The surface feature pattern disrupts the TIR and scatters at least some of the light outside of at least one surface of the top and bottom surfaces. The cut line redirects at least some of the light from a first direction to a second direction within the light guide. The first direction is a direction other than towards the surface feature pattern, while the second direction is a direction substantially towards the surface feature pattern.
Abstract:
An exemplary embodiment of a segmented light guide includes a light channeling layer having at least one slit dividing the light channeling layer into a plurality of segments, and at least one LED associated with the light channeling layer. The slit substantially prevents light from migrating in the segmented light guide between adjacent segments that are divided by the slit.
Abstract:
A lighting system is described. One embodiment of the lighting system includes a light guide, a first lighting device, and a second lighting device. The light guide receives light along a transmission interface. The first lighting device has a first plurality of lighting elements coupled to a first substrate between a first pair of reflector walls. The first substrate and the first pair of reflector walls define a first exposed side of the first lighting device. The second lighting device has a second plurality of lighting elements coupled to a second substrate between a second pair of reflector walls. The second substrate and the second pair of reflector walls define a second exposed side of the second lighting device configured to match the first exposed side of the first lighting device. Using lighting devices without sidewalls illuminates a diffusion panel so that there are no dark spots.
Abstract:
An LED-based light system includes a primary light source and at least one redundant light source. The primary light source is activated by itself and the performance of the light source is measured to determine whether nor not to drive the redundant light source. The redundant light source is activated when the performance measurements indicate that a performance characteristic is not being met by the primary light source alone. The first light system can be activated in combination with the redundant light source once the decision is made to activate the redundant light source.
Abstract:
A keypad illumination apparatus having a key plate member, a flexible light guide film, a reflective layer, a plurality of metal domes, a light source and a substrate. The key plate member may have a plurality of keys formed thereon. The flexible light guide film is configured to transmit light from the light source and has a plurality of plunging structures and apertures to accommodate the plurality of metal domes, which may be configured to actuate a plurality of electrical switches on the substrate.
Abstract:
A light guide includes a light interface surface, top and bottom surfaces, a surface feature pattern, and a cut line. The light interface surface receives light into the light guide from a light source. The light received through the light interface surface reflects according to total internal reflection (TIR) within the light guide between portions of the top and bottom surfaces. The surface feature pattern disrupts the TIR and scatters at least some of the light outside of at least one surface of the top and bottom surfaces. The cut line redirects at least some of the light from a first direction to a second direction within the light guide. The first direction is a direction other than towards the surface feature pattern, while the second direction is a direction substantially towards the surface feature pattern. The light guide may back-illuminate an optical keypad with a plurality of push buttons.
Abstract:
An exemplary embodiment of a segmented light guide includes a light channeling layer having a plurality of regions, with multiple slits in the light channeling layer dividing neighboring regions. The segmented light guide also includes at least one light source associated with the light channeling layer.
Abstract:
An exemplary embodiment of a segmented light guide includes a light channeling layer having at least one slit dividing the light channeling layer into a plurality of segments, and at least one LED associated with the light channeling layer. The slit substantially prevents light from migrating in the segmented light guide between adjacent segments that are divided by the slit.