Abstract:
An electroimpedance tomograph is provided with a plurality of electrodes (1), which can be placed on the body of a patient and are connected to a control and evaluating unit (20) via a selector switch (60). The control and evaluating unit (20) cooperates with the selector switch (60) such that two electrodes each are supplied with alternating current from an AC power source (22). The detected analog voltage signals of the other electrodes are sent into the control and evaluating unit (20) via a measuring amplifier (62) and AD converter (64) and are processed there in order to reconstruct the impedance distribution of the body in the plane of the electrodes therefrom. A symmetrical AC power source (22) is used to reduce common-mode signals. To make it possible to suppress errors due to common-mode signals, provisions are made for the control and evaluating unit (20) to be set up for making available an additional common-mode signal at an output during an adjusting mode of operation and to send it to the body via common-mode signal electrodes (4, 90) that can be placed on the body. The control and evaluating unit (20) is prepared, furthermore, to adjust the measuring amplifier (62) according to value and phase for each electrode pair connected by the selector switch (60) such that the common-mode signal at the output of the measuring amplifier (62) is minimized, and the adjusted parameters are stored for each electrode pair.
Abstract:
A modular system of electronic assembly units worn close to the body can be connected to a central supply module. At least one textile-supported supply line (1) leads to inductive interfaces, with which additional supply lines or electronic assembly units can be coupled, which likewise have at least one inductive interface. At least one portable supply module (6) has a power supply unit (9) and a control unit (10). The control unit (10) is designed such that it can assume a master function in respect to other coupled electronic assembly units, wherein the portable supply module (6) can be coupled via at least one inductive interface with the textile-supported supply line (1) such that it makes possible the power supply of the electronic assembly units (4) by the electronic supply unit (9) contained in the portable supply module (6).
Abstract:
The invention relates to a method for operating an amperometric measuring cell which includes at least a measuring electrode 2 and a counter electrode 3 in an electrolyte chamber 4 filled with an electrolyte. The measuring cell is closed off by a permeable membrane 7 with respect to the measurement sample to be detected. The method of the invention improves the run-in performance of the measuring cell 1. The method includes the step of applying a voltage U.sub.1 across the electrodes (2, 3) during a first time span T.sub.1 starting at a reference time T.sub.0. A reference voltage U.sub.0 is assumed at the start of the measurement and the voltage U.sub.1 is increased relative to the reference voltage U.sub.0.
Abstract:
The invention is directed to a measuring apparatus for detecting gases with the aid of an electrochemical sensor with a diffusion barrier being disposed ahead of the sensor. The measuring apparatus is improved in such a manner that the sensor is adaptable with respect to its sensitivity to different measuring ranges during operation without external intervention. The speed of response of the sensor is also increased. Diffusion openings in the diffusion barrier are closable with a valve arrangement associated with the valve openings. The valve arrangement is connected via a valve drive unit to a measurement value comparator for changing the operating position of the particular valve to be actuated.
Abstract:
A circuit arrangement is disclosed for correcting the output of a sensor which experiences changes in sensitivity due to the presence of one or more influencing factors, such as the concentration of a material to be sensed, or the passage of time. The circuit arrangement includes a correction network which generates a simulated sensitivity curve which simulated curve is combined with the output of the signal to produce a corrected output signal which has apparent constant sensitivity.
Abstract:
A device for the analysis of the qualitative, optionally also the quantitative composition of gases, uses measuring light of known spectral composition that can pass through the gas to be analyzed and the gas can be caused to interact. A detector arrangement is present, which can detect light originating from the sites of the interaction between the measuring light and the gas to be analyzed. At least one refractive-diffractive optical element is provided, which is transparent over its entire surface and contributes to a wavelength-dependent imaging of the light to be detected onto the detector arrangement in a transmitting manner. The refractive-diffractive optical element is arranged in the ray path between the area in which the interaction between the gas to be analyzed and the measuring light takes place and the detector arrangement.
Abstract:
A device for guiding a person along a traveled path enables the wearer of the device to be guided back along the traveled path in an electronically supported manner even under conditions under which orientation is difficult. The device has a portable ejection means (2), in which a container (14) for accommodating a plurality of transponders (7) and an ejection mechanism (10), which is actuated by a control device (6) to eject a transponder (7) from the container (14), are present. A control unit (6) is prepared such as to actuate the ejection mechanism (10) at predetermined time intervals or at predetermined distances in space. A portable transmitter/receiver device (8) is designed to detect at least one of the transponders (7) dropped off and to generate a signal representative of the direction in which that transponder (7) is located. A portable display device (4) receives the direction signal of the transmitter/receiver means (8) and offers the wearer a visual and/or acoustic display of the direction.
Abstract:
An electroimpedance tomograph with a plurality of electrodes (1) is provided, which can be placed on the body of a patient and are connected via a selector switch (60) with a control and evaluating unit (20). The control and evaluating unit (20) cooperates with the selector switch (60) such that two electrodes each are supplied with an alternating current from an AC power source (22) and the detected analog voltage signals of the other electrodes are processed in order to reconstruct therefrom the impedance distribution of the body in the plane of the electrodes, wherein a symmetrical AC power source is used to reduce common-mode signals. To further suppress interferences due to common-mode signals, provisions are made for the control and evaluating unit (20) to be set up, furthermore, for detuning the common-mode signal of the alternating current on the body against the ground by means of a common-mode signal measuring electrode (4) and, based on this, the symmetry of the symmetrical AC power source such that the common-mode signal on the body is minimized, and the corresponding detuning parameters are stored for each electrode pair.
Abstract:
The invention relates to an apparatus and a method for improved correction of drift in an infrared measuring instrument. The measurement signal furnished by a thermal detector is split into a direct voltage component and an alternating voltage component. By means of calibration curves (24, 27), a calculated comparison variable T DC , korr 900 is formed from a measured, averaged concentration value c AC1 900 . The correction value ΔT for the drift correction is obtained from the difference between the corresponding measured size of the direct voltage component T DC 900 and the comparison variable T DC , korr 900 .
Abstract:
A device is provided for putting an electrode carrier on a recumbent patient. The device includes a first lifting cushion that supports the shoulder region and the head of the patient at the same time and into which a pressurized medium can be admitted. A second lifting cushion is provided that supports the lumbar region and into which pressurized medium can be admitted. A spacer is provided fixing the lifting cushions in relation to one another in the chest region.