Abstract:
An image forming apparatus includes a carriage configured to movably scan, and including a recording head configured to discharge ink droplets and a sub tank configured to supply ink to the recording head; a main tank configured to supply the ink to the sub tank via a tube; a negative pressure detector configured to detect a state of a negative pressure in the sub tank; a count unit configured to count a number of scans conducted by the carriage; and a control unit configured to cause the negative pressure detector to detect the state of the negative pressure in the sub tank to return the negative pressure in the sub tank to a normal state based on a detection result obtained by the negative pressure detector when the number of scans carried out by the carriage as counted by the count unit reaches a predetermined scan count.
Abstract:
An image forming apparatus has a liquid discharge head to discharge droplets of a recording liquid to form an image on a recording medium and a maintenance-and-recovery mechanism to perform a maintenance and recovery operation on the liquid discharge head. The maintenance-and-recovery mechanism includes a suction device, a control unit, a drain tube, and a drain reservoir. The suction device suctions droplets of the recording liquid from the liquid discharge head. The suctioned droplets are not used for an image forming operation. The control unit controls a suction speed of the suction device. The drain reservoir stores the suctioned droplets drained from the drain tube. The drain tube is inclined relative to an opening portion of the drain reservoir. The control unit controls the suction speed of the suction device to change a drain speed of the suctioned droplets drained from the drain tube.
Abstract:
An etching method of forming circuit patterns on a printed circuit board is disclosed. The etching method comprises step of supplying etching solvent with discharge pressure of substantially 5.about.10 kg/cm.sup.2 and discharge particle diameter of 100.about.200 .mu.m.
Abstract:
An apparatus for chamfering the outer edges of stacked printed circuit boards comprises a detecting device for detecting the boundary between two adjacent boards, and a chamfering tool positionable adjacent to the opposed outer edges of respective ones of the two adjacent boards in response to detection of the boundary and movable along the board outer edges to simultaneously chamfer both outer edges. The chamfering tool successively chamfers pairs of opposed outer edges in the upward direction on one side of the stack, and then the stack is turned so that the chamfering tool chamfers the outer edges on a different side of the stack printed circuit boards.
Abstract:
A planar surface of an article is ground smooth by a two-stage grinding head having an upstream-stage grinding brush and a downstream-stage grinding stone. The article is advanced past the grinding head while the grinding head is eccentrically driven so that the grinding brush coarsely grinds the planar surface and forms therein spiral brush traces and the grinding stone finely grinds the coarsely ground planar surface to smoothen the brush traces.
Abstract:
An apparatus for surface grinding a planar surface of an article comprises a two-stage grinding head having an upstream-stage grinding brush and a downstream-stage grinding stone. The article is advanced past the grinding head while the grinding head is eccentrically driven so that the grinding brush coarsely grinds the planar surface and forms therein spiral brush traces and the grinding stone finely grinds the coarsely ground planar surface to smoothen the brush traces.
Abstract:
A liquid discharge head includes a nozzle plate having a nozzle from which a liquid is discharged, a housing holding the nozzle plate, a valve that opens and closes the nozzle, an expandable driver disposed inside the housing, and a restraint. The expandable driver has a first end that supports a rear end of the valve and a second end fixed to the housing. The expendable driver moves the valve in a longitudinal direction to push a leading end of the valve against the nozzle to close the nozzle. The restraint positions the second end with respect to the housing in the longitudinal direction. A difference between ΔL1 and ΔL2 is equal to or less than a predetermined value, where ΔL1 represents a thermal deformation amount of a first length due to temperature change, and ΔL2 represents a thermal deformation amount of a second length due to the temperature change.
Abstract:
An object of the present disclosure is to provide a liquid discharge apparatus capable of sucking liquid in a cap member while suppressing generation of bubbles by a suction assisting member detachable from a cap member. A liquid discharge apparatus includes a liquid discharge head (6) to discharge liquid from a plurality of nozzles, and a suction mechanism (8) to suck the liquid from the liquid discharge head (6). The suction mechanism (8) includes a cap member (30) to contact the liquid discharge head (6) and cover the plurality of nozzles while forming a space between the cap member (30) and the liquid discharge head (6), a suction pump (31) connected to the cap member (30) via a suction hole (31a) formed in a surface of the cap member (30) to reduce pressure in the space, a suction assisting member (32) to cover the suction hole (30a) and the surface in which the suction hole (30a) is formed in the cap member (30), the suction assisting member (32) including a surface that forms a suction path between the suction assisting member (32) and the cap member (30), and a first support (32a) to provide a gap (c1) between the surface that forms the suction path of the suction assisting member (32) and the surface in which the suction hole (31a) is formed.
Abstract:
An image forming device includes a drive transfer device that selectively transmits a driving force of a first drive source to one of liquid feed pumps, a suction part of a maintenance recovery device and an air-vent opening part. The air-vent opening part is arranged to have a maximum driving-force transmission path leading to the drive transfer device among the liquid feed pumps, the suction part and the air-vent opening part. The maintenance recovery device, the drive transfer device and the liquid feed pumps are arranged in order in a sheet transport direction. The suction part of the maintenance recovery device and the drive transfer device are arranged on opposite sides of a cap of the maintenance recovery device in the sheet transport direction.
Abstract:
A hole masking apparatus for use in the manufacture of a printed wiring board is disclosed. The apparatus comprises first and second positioning sections provided on a conveying path of a base material at a distance apart for stopping the positioning of the base material having a plurality of through holes at respective given position; a masking device provided to respective positioning sections and having a head to paste a seal while supplying and for pasting the seal on through holes by moving the head in such a manner that the head is positioned on through holes which do not require a plugging up thereof; and a reversing section arranged between the first and the second positioning sections and for reversing face and back of the base material on the conveying path thereof.