Abstract:
A thin film transistor including a lightly doped drain (LDD) region or offset region, wherein the thin film transistor is formed so that primary crystal grain boundaries of a polysilicon substrate are not positioned in the LDD or offset region.
Abstract:
A Fiber Channel router used to join fabrics. EX_ports are used to connect to the fabrics. The EX_port joins the fabric but the router will not merge into the fabric. Ports in the Fiber Channel router can be in a fabric, but other ports can be connected to other fabrics. Fiber Channel routers can be interconnected using a backbone fabric. Global, interfabric and encapsulation headers are developed to allow routing by conventional Fiber Channel switch devices in the backbone fabric and simplify Fiber Channel router routing. Phantom domains and devices must be developed for each of the fabrics being interconnected. Front phantom domains are present at each port directly connected to a fabric. Each of these is then connected to at least one translate phantom domain. Zoning is accomplished by use of a special LSAN zoning naming convention. This allows each administrator to independently define devices are accessible.
Abstract:
The present invention relates to a flat panel display device comprising a polycrystalline silicon thin film transistor and provides a flat panel display device having improved characteristics by having a different number of grain boundaries included in polycrystalline silicon thin film formed in active channel regions of a driving circuit portion and active channel regions of pixel portion. This may be achieved by having a different number of grain boundaries included in the polycrystalline silicon thin film formed in active channel regions of a switching thin film transistor and a driving thin film transistor formed in the pixel portion, and by having a different number of grain boundaries included in polycrystalline silicon thin film formed in active channel regions of a thin film transistor for driving the pixel portion for each red, green and blue of the pixel portion. Further, this may be achieved by having a different number of grain boundaries included in polycrystalline silicon formed in active channel regions of an NMOS thin film transistor and a PMOS thin film transistor for forming CMOS transistor used in flat panel display device, thereby constructing a thin film transistor to obtain the improved characteristics for each transistor.
Abstract:
An electronic device includes first and second interconnections formed on a first surface of a substrate and spaced apart from each other. The electronic device includes a first insulating material layer disposed on the substrate including the first and second interconnections and including a first opening exposing a predetermined region of the first interconnection. The electronic device further includes a first pad filling the first opening and having a greater width than the first opening. The first pad covers at least a part of the second interconnection adjacent to one end of the first interconnection, and the first pad is electrically insulated from the second interconnection by the first insulating material layer.
Abstract:
The present invention relates to a chitosan capsule in which a soluble active ingredient is encapsulated in a matrix containing chitosan and phytic acid; a cross-linking method and materials capable of being used in preparing the capsule; and pharmaceutical, food and cosmetic compositions comprising the capsule. The chitosan capsule according to the present invention is prepared via ionic gelation of chitosan as a biodegradable polymer with phytic acid capable of rapidly and effectively forming a cross-linking reaction with the chitosan polymer. The capsule of the present invention shows high encapsulation efficiency for a soluble active ingredient and protects the soluble active ingredient from being damaged in a digestive tract, resulting in improving an in vivo delivery efficiency of a physiologically active material. Further, since the capsule of the present invention has a pH-dependent sustained-release mechanism which can minimize the release of a soluble active ingredient in the stomach and gradually release in the intestine, it is possible to regulate sustained-release of a soluble active ingredient.
Abstract:
A Fibre Channel router used to join fabrics. EX_ports are used to connect to the fabrics. The EX_port joins the fabric but the router will not merge into the fabric. Ports in the Fibre Channel router can be in a fabric, but other ports can be connected to other fabrics. Fibre Channel routers can be interconnected using a backbone fabric. Global, interfabric and encapsulation headers are developed to allow routing by conventional Fibre Channel switch devices in the backbone fabric and simplify Fibre Channel router routing. Phantom domains and devices must be developed for each of the fabrics being interconnected. Front phantom domains are present at each port directly connected to a fabric. Each of these is then connected to at least one translate phantom domain. Zoning is accomplished by use of a special LSAN zoning naming convention. This allows each administrator to independently define devices are accessible.
Abstract:
Provided a self-biased receiver system using a multi-fed antenna, including: at least one first port connected to an electronic circuit; and a second port connected to a feeder forming a DC (direct current) voltage using an input electromagnetic wave and feeding the DC voltage to the electronic circuit.
Abstract:
A display device with a polysilicon substrate, including a display region, a first plurality of thin film transistors in the display region, and primary crystal grain boundaries in the polysilicon substrate in the display region, wherein the primary crystal grain boundaries are inclined to a first direction of current flowing from source to drain of each of the first plurality of thin film transistors at an angle of −30° to 30°.
Abstract:
A flat panel display is provided. The flat panel display includes a light emitting device and two or more thin film transistors (TFTs) having semiconductor active layers having channel regions, where the thickness of the channel regions of the TFTs are different from each other. Thus, higher switching properties of a switching TFT can be maintained, a more uniform brightness of a driving TFT can be satisfied, and a white balance can be satisfied without changing a size of the TFT active layer.
Abstract:
A display device that requires less manufacturing time is presented. The display device includes a light blocking member formed on a substrate, a semiconductor layer formed on the light blocking member, and a gate insulating layer formed on the semiconductor layer. Gate conductors, a first interlayer insulating layer, data conductors, a second interlayer insulating layer, and a pixel electrode are formed. A third interlayer insulating layer is deposited with an opening that extends to the pixel electrode. An organic light emitting member is formed in the opening, and a common electrode is formed. The light blocking member contains nickel and silicon oxide. The presence of nickel-and-silicon-oxide light blocking member below the semiconductor improves the crystallizing speed for the semiconductor layer, reducing the overall manufacturing time. Further, the light blocking member is disposed under the pixel electrodes to prevent light leakage, improving the contrast ratio and image quality.