Abstract:
A light source module includes a module substrate, a metal conductor, a plurality of semiconductor light emitting elements, a white diffuse reflection layer, and translucent sealing members. The metal conductor is provided in a predetermined pattern on a front surface of the module substrate. The semiconductor light emitting elements are electrically connected to the metal conductor and mounted on the front surface of the module substrate. The white diffuse reflection layer includes a plurality of holes in which the semiconductor light emitting elements are located, is thinner than the semiconductor light emitting elements, and is laminated to the front surface of the module substrate. The translucent sealing members bury the semiconductor light emitting elements, project below the diffuse reflection layer, and are mixed with a phosphor.
Abstract:
There is provided a light-emitting module which makes it difficult to sense glare and which suppresses the temperature rise of light-emitting diode chips and has a cost advantage. The light-emitting module is provided with a base body formed with a non-metallic member having a thermal conductivity of 1 W/mk or less. In the base body, a plurality of LED chips are spaced 10 to 30 mm apart from each other, and their junction temperature when they are normally lit is preferably set at 90° C. or less. A translucent sealing member covering an area between the adjacent light-emitting diode chips is provided.
Abstract:
A spotlight is provided with a substrate having LEDs disposed thereon and a main body casing on which the substrate is provided. The main body casing has a rear side portion having thermal conductivity, which is thermally coupled to the substrate, and is capable of changing the irradiation angle of light emitted from the LEDs. A plurality of heat-radiating fins for forming grooves operating as a plurality of convection paths along the direction of changing the irradiation angle are provided on the rear side portion of the main body casing.
Abstract:
A fluorescent lamp comprises a glass tube having the glass tube diameter of 12-20 mm which is formed on an endless shape as a whole by being partially folded, the protective coating formed on the inner wall of the glass tube, the coating containing a mixture of large particles with a mean particle size not less than 1.0 μm and fine particles with a mean particle size in the range of 10 to 100 nm, a phosphor coating formed on the protective coating, a pair of electrodes mounted in both ends of the glass tube, and a discharge medium filled in the glass tube.
Abstract:
An internal electrode (14) is formed on the inner wall surface of a tube-shaped light emitting body (12) along the longitudinal direction of the light emitting tube (12). An external electrode (15) is formed on the exterior surface of the light emitting tube (12) along the longitudinal direction of the light emitting tube (12). An electric discharge starts between the internal electrode (14) and the external electrode (15) by applying a high-frequency voltage therebetween. Only one tube wall of the light emitting tube (12) lies between the internal electrode (14) and the external electrode (15), and the internal electrode (14) and the external electrode (15) can be brought close to each other. The limitation of an electric current running between the internal electrode (14) and the external electrode (15) can be reduced, and a starting voltage or a discharge-maintaining voltage can be lowered. In addition, the internal electrode (14) can be easily processed with high accuracy.
Abstract:
A portable information device includes a portable main part having a clocking function, a source part which is detachably attachable to the main part and contains secondary batteries serving as a power source for the main part, and a charger which is separate from the main part and serves to charge the source part. The charger includes a clock part for setting time, and the information device is adapted to cause time data from the clock part to be transmitted to the source part when the source part is charged by the charger and, when the source part is attached to the main part, to transmit time data updated by the source part to the main part and to thereafter cause the main part to continue updating the time data.
Abstract:
A coil component comprises a wire, a terminal pin around which an end of the wire is wound, a terminal section for fixing one end of the terminal pin and for allowing the terminal pin to project therefrom. A conductive connection member is connected to the terminal pin so that it can be electrically connected to the wire. The terminal pin has a diameter on an open side thereof which is formed larger than that on a root side form which the conductive connection member is drawn out. The pin is formed as a contact section with which the conductive connection member makes contact when it is pulled in a projection direction of the terminal pin.
Abstract:
Nonvolatile memory with simple structure where recorded information can be read without destroy: Voltage is impressed to control gate CG and channel is grounded at writing operation. Ferroelectric layer 32 is polarized in accordance with whether the applied voltage is larger than threshold voltage of the memory device. Control gate voltage V.sub.CC to make channel is little when the ferro-electric layer 32 is polarized with control gate side being positive (polarized with second status). Control gate voltage V.sub.CG to make channel is large when the ferroelectric layer 32 is polarized with control gate side being negative (polarized with first status). The reference voltage V.sub.ref is impressed to the control gate CG at reading operation. Large drain current flows when the ferroelectric layer is polarized with second status and little drain current flows when the ferroelectric layer is polarized with first status. Recorded information can be read by detecting the drain current. By this reading operation, polarization status is not destroyed.