Abstract:
This application relates to various methods and apparatus for rapidly obtaining accurate formation property data from a drilled earthen borehole. Quickly obtaining accurate formation property data, including formation fluid pressure, is vital to beneficially describing the various formations being intersected. For example, methods are disclosed for collecting numerous property values with a minimum of downhole tools, correcting and calibrating downhole measurements and sensors, and developing complete formation predictors and models by acquiring a diverse set of direct formation measurements, such as formation fluid pressure and temperature. Also disclosed are various methods of using of accurately and quickly obtained formation property data.
Abstract:
For some embodiments, a software application for correcting sensor data in a remote database (114, 118) according to magnetic correction parameters obtained from a geophysical survey service, the sensor data obtained from directional instruments on a well tool (107, 108, 110). The remote database resides in a field computer (112) at a well site, and a copy of the remote database may also reside in a real time operations computer system. For some embodiments, the sensor data for particular depths and measurement times are stored as rows in a table (FIG. 3). The correction software may write new rows in the remote database with the corrected sensor data, or may write new rows in a second database for storing corrected sensor data (FIG. 1).
Abstract:
A string of subs includes a controller sub. The controller sub includes a first end, a second end, a controller, a first controller bus coupled to the controller, the first controller bus exiting at the first end of the controller sub, and a second controller bus coupled to the controller, the second controller bus being separate from the first controller bus, the second controller bus exiting at the second end of the controller sub. The string of subs also includes a first measuring sub and a second measuring sub. A process, running on a computer, discovers that the first measuring sub is connected to the first controller bus, discovers that the second measuring sub is connected to the first controller bus, determines that the first measuring sub is physically closer to the controller sub than the second measuring sub, and use the fact that the first measuring sub is physically closer to the controller sub than the second measuring sub in controlling the operation of the string of subs.
Abstract:
For some embodiments, a software application for correcting sensor data in a remote database (114, 118) according to magnetic correction parameters obtained from a geophysical survey service, the sensor data obtained from directional instruments on a well tool (107, 108, 110). The remote database resides in a field computer (112) at a well site, and a copy of the remote database may also reside in a real time operations computer system. For some embodiments, the sensor data for particular depths and measurement times are stored as rows in a table (FIG. 3). The correction software may write new rows in the remote database with the corrected sensor data, or may write new rows in a second database for storing corrected sensor data (FIG. 1).
Abstract:
A method and related apparatus for telemetry between downhole devices and surface devices. In particular, the methods and related apparatus may send a first datum of a first parameter in an uncompressed form, and send a second datum of the first parameter in compressed form.
Abstract:
A string of subs includes a controller sub. The controller sub includes a first end, a second end, a controller, a first controller bus coupled to the controller, the first controller bus exiting at the first end of the controller sub, and a second controller bus coupled to the controller, the second controller bus being separate from the first controller bus, the second controller bus exiting at the second end of the controller sub. The string of subs also includes a first measuring sub and a second measuring sub. A process, running on a computer, discovers that the first measuring sub is connected to the first controller bus, discovers that the second measuring sub is connected to the first controller bus, determines that the first measuring sub is physically closer to the controller sub than the second measuring sub, and use the fact that the first measuring sub is physically closer to the controller sub than the second measuring sub in controlling the operation of the string of subs.
Abstract:
One embodiment includes an apparatus that includes a storage medium to store data. The apparatus also includes a connector having an optical interface for data communication, coupled to the storage medium, to communicate in a combustible gas environment.
Abstract:
One embodiment includes an apparatus that includes a coherent radiation source to emit coherent radiation through a signal carrier that is positioned along at least a part of a length of a downhole drilling component. The apparatus also includes a receiver to receive the coherent radiation that is to be emitted through the signal carrier.