Abstract:
The present invention relates to a process for creating a Carbon-Carbon bond (C—C) or a Carbon-Heteroatom bond (C-HE) by reacting a compound carrying a leaving group with a nucleophilic compound carrying a carbon atom or a heteroatom (HE) that can substitute for the leaving group, creating a C—C or C-HE bond, wherein the reaction takes place in the presence of an effective quantity of a catalytic system comprising iron and copper.
Abstract:
The present invention relates to a method for the hydroxylation of halogen aryl compounds carried out at a temperature lower than 200° C. in the presence of a catalytic system including a copper-based catalyst and a ligand L according to reaction scheme Formula (A), in which: R is selected from the groups having an acceptor inductive effect and the groups having a donor mesomer effect; M is selected from alkaline or alkaline-earth cations; X is a halogen atom; r is between 0 and 5; and the ligand L is selected from compounds having formula I.
Abstract:
The present invention concerns a process for creating a Carbon-Carbon bond (C—C) or a Carbon-Heteroatom bond (C-HE) by reacting a compound carrying a leaving group with a nucleophilic compound carrying a carbon atom or a heteroatom (HE) that can substitute for the leaving group, creating a C—C or C-HE bond, wherein the reaction takes place in the presence of an effective quantity of a. a catalytic system comprising a ligand and at least a metal-based catalyst, such a metal catalyst being chosen among iron or copper compounds proviso that only a single metal is present.
Abstract:
The invention relates to a method for forming a carbon-carbon or carbon-heteroatom bond by reacting an unsaturated compound carrying a leaving group and a nucleophilic compound, in the absence of a ligand. The aim of the invention is especially to form carbon-nitrogen bonds according to a method for the arylation of nitrogenated organic derivatives. According to the inventive method, a carbon-carbon or carbon-heteroatom bond is formed by reacting an unsaturated compound carrying a leaving group with a nucleophilic compound donating a carbon atom or a heteroatom (HE) that can substitute the leaving group, thus forming a C—C or C—HE bond, in the presence of a copper-based catalyst and a base. Said metal is characterised in that the reaction takes place in the absence of a ligand and in a nitrile-type solvent.
Abstract:
The invention concerns novel catalysts for aromatic nucleophilic substitution. Said catalysts are compounds of the general formula (I), wherein: R1, R2, R3, R4, R5, and R6, identical or different, are selected among hydrocarbon radicals; the Pn's, advantageously the same, are selected among metalloid elements of column V of a period higher than nitrogen; Z is a metalloid element of column V, advantageously distinct from Pn; preferably a nitrogen (N, P, As, Sb). The invention is applicable to organic synthesis
Abstract:
The invention concerns novel catalysts for aromatic nucleophilic substitution. Said catalysts are compounds of the general formula (I), wherein: R1, R2, R3, R4, R5, and R6, identical or different, are selected among hydrocarbon radicals; the Pn's, advantageously the same, are selected among metalloid elements of column V of a period higher than nitrogen; Z is a metalloid element of column V, advantageously distinct from Pn; preferably a nitrogen (N, P, As, Sb). The invention is applicable to organic synthesis.
Abstract:
The present invention relates to a method for the hydroxylation of halogen aryl compounds carried out at a temperature lower than 200° C. in the presence of a catalytic system including a copper-based catalyst and a ligand L according to reaction scheme Formula (A), in which: R is selected from the groups having an acceptor inductive effect and the groups having a donor mesomer effect; M is selected from alkaline or alkaline-earth cations; X is a halogen atom; r is between 0 and 5; and the ligand L is selected from compounds having formula I.
Abstract:
The invention concerns novel catalysts for aromatic nucleophilic substitution. Said catalysts are compounds of the general formula (I), wherein: R1, R2, R3, R4, R5, and R6, identical or different, are selected among hydrocarbon radicals; the Pn's, advantageously the same, are selected among metalloid elements of column V of a period higher than nitrogen; Z is a metalloid element of column V, advantageously distinct from Pn; preferably a nitrogen (N, P, As, Sb). The invention is applicable to organic synthesis.
Abstract:
The present invention concerns a process for arylating or vinylating or alkynating a nucleophilic compound. More particularly, the invention concerns arylating nitrogent-containing organic derivatives. The arylating or vinylating or alkynating process of the invention consists of reacting a nucleophilic compound with a compound carrying a leaving group and is characterized in that the reaction is carried out in the presence of an effective quantity of a catalyst based on a metallic element M selected from groups (VIII), (Ib) and (IIb) of the periodic table and at least one at least bidentate ligand comprising at least two chelating atoms, namely at least one oxygen atom and at least one nitrogen atom.