Abstract:
Stereoscopic image display is described. In an embodiment, a location of the eye pupils of a viewer is determined and tracked. An image is displayed within a first focus for viewing with the left eye of the viewer, and the image is displayed within a second focus for viewing with the right eye of the viewer. A positional change of the eye pupils is tracked and a sequential image that corresponds to the positional change of the eye pupils is generated for stereoscopic viewing. In another embodiment, an image is displayed for stereoscopic viewing and a head position of a viewer relative to a center of the displayed image is determined. A positional change of the viewer's head is tracked, and a sequential image that corresponds to the positional change of the viewer's head is generated for stereoscopic viewing.
Abstract:
A method and system for mobile device power consumption management decreases the instantaneous power consumption of a mobile device, increasing operational lifetime of the device. In an embodiment of the invention, the mobile device is associated with a plurality of device behavior modification techniques that can be set in response to data collected from a plurality of sensors associated with the device. In an embodiment, the sensors detect the device's motion, tilt, proximity to a user, contact with a user, and orientation with respect to a user. In a further embodiment, the sensors detect a temperature related to the device or its environment.
Abstract:
A microelectrical mechanical out-of-plane thermal buckle-beam actuator is capable of providing transverse-plane movement of shutters. The actuator includes a pair of structural anchors secured to a substrate and one or more thermal buckle-beams secured at respective base ends to the anchors. Each buckle-beam extends substantially parallel to and spaced-apart from the substrate and is releasable from the substrate at points other than at the anchors. The thermal buckle-beam actuators are suitable for use in a microelectrical mechanical optical display system.
Abstract:
A tactile overlay for a touchscreen includes one or more button structures, a flexible resilient membrane, and one or more nibs corresponding to the one or more button structures. The overlay is disposed over and in propinquity with the touchscreen display, with button and corresponding nib structure(s) of the overlay corresponding to virtual buttons that are displayed by the touchscreen display. The button structure(s) and corresponding nibs are positioned on the overlay so that a user can press a button structure, which causes the corresponding nib to touch a desired virtual button being displayed by the touchscreen display. The flexible resilient layer causes the nib to return to original position, breaking contact with the touchscreen display.
Abstract:
A fire retardant intumescent coating composition comprises: (a) 30 to 60% by weight of a phosphorous containing material which decomposes to produce phosphoric acid when the coating is exposed to fire; (b) 10 to 30% by weight of a thermosetting binder; (c) 2.5 to 10% by weight of a curing agent for the thermosetting binder; and (d) 5 to 40% by weight of a thermoplastic binder, wherein the active groups of the thermosetting and thermoplastic binders are chosen so as to impart charring and blowing functions to the intumescent coating composition. The thermosetting binder is advantageously a hydroxylated thermosetting binder, suitably an epoxy resin. The thermoplastic binder is advantageously an oxygenated heterocyclic thermoplastic binder, suitably an aldehyde and/or ketone resin. The coating composition may contain I to 10% by weight of a colouring agent, suitably titanium dioxide. The coating composition may contain 0.1 to 10% by weight of melt viscosity modifier, suitably hydrogenated castor oil.
Abstract:
A computer input device includes a camera for capturing an image of a pattern on a surface. A processor in the computer input device determines equations for lines from the image of the pattern, applies the line equations to a transform to form transformed line equations, and uses the transformed line equations to determine the height of the computer input device above the surface.
Abstract:
A MEMS optical display system includes an illumination source for providing illumination light, a collimating lens for receiving the illumination light and forming from it collimated illumination light, and a microlens array having an array of lenslets for receiving the illumination light from the collimating lens. The converging microlens array directs the illumination light through an array of pixel apertures in an aperture plate to a microelectrical mechanical reflector array positioned opposite the aperture plate. The microelectrical mechanical reflector array includes an array of microelectrical mechanical actuators that support reflectors in alignment with the array of pixel apertures and selectively orients the reflectors to direct the illumination light back through the pixel apertures (to form part of a display image) or against the aperture plate (to be blocked). The illumination light passing back through the pixel apertures passes through the microlens array and a beamsplitter to a display screen.
Abstract:
The disclosure describes input devices for processor-based systems, including computing systems, to provide enhanced user experience. The described systems provide tactile sensations providing feedback to a user. In some systems, feedback is provided before actual contact with the key expelling air from the input device proximate the key when user selection is imminent. In other examples, the tactile sensation results from automatic movement of the key in response to detected user selection of the key. Additional examples and variations are described herein.
Abstract:
A method and apparatus is provided for managing a plurality of devices in a federated network and a sub-network within the federated network. The devices in the sub-network may have a functional capability of performing a function associated with the federated network. For example, the federated network may include devices for providing data content such as media content and the sub-network may include devices for controlling the presentation of the data content. In addition, a constellation of devices is provided that may share data content such as media data. At least some of the devices in the constellation may form a sub-network.
Abstract:
A method and system is provided for management of medical data from a network of devices. The network of devices may include federated sensors that collect and forward medical data pertaining to an individual or biological specimen. The federated sensors or a central or remote device may further process the medical data and assign a priority value to the medical data. Processing can also include the analysis of the data for sensor error, local fusion of multiple sensors into higher-level interpretations, and the summarization or abstraction of the data into information that people are more comfortable with sharing than they might be with transmittal of the base data. The medical data may be transported to a healthcare provider or other endpoints based on the priority value and the authorization of recipient.