Abstract:
A portable lighting device includes a controller, a power source that provides a voltage, and a load that includes a light emitting diode (LED) light source. The controller receives the voltage and regulates a current of the LED light source based on a sensing signal indicating the voltage of the power source. The controller regulates the current of the LED light source to a first current level if the voltage of the power source is greater than a first voltage level, and to a second current level if the voltage of the power source is less than a second voltage level. The second voltage level is less than the first voltage level. The controller regulates the current of the LED light source to vary according to the sensing signal if the voltage of the power source is between the first voltage level and the second voltage level.
Abstract:
A circuit for driving a load includes a power line, converter circuitry, and a controller. The power line is operable for providing an input current and an input voltage. The converter circuitry coupled to the power line is operable for converting the input voltage to a regulated voltage to drive the load, and for providing a current detection signal indicating whether a converter current flowing through the converter circuitry drops to a predetermined level. The controller coupled to the converter circuitry is operable for correcting a power factor of the circuit based on the current detection signal and the input voltage such that a waveform of the input current follows a waveform of the input voltage.
Abstract:
A circuit structure for LCD backlight is disclosed in the present invention. The circuit structure includes an inverter topology, a current balance circuit, and a plurality of loads. The current balance circuit is coupled to the plurality of loads and capable of balancing current of N loads by using N/2-1 balance chokes. The circuit structure may further include a protection circuit which is coupled to the low voltage sides of the plurality of loads. The protection circuit is capable of sensing lamp voltages and providing a feedback signal to a controller. Furthermore, the protection circuit is composed of count-reduced and cost-competitive electronic elements.
Abstract:
A portable lighting device includes a controller, a power source that provides a voltage, and a load that includes a light emitting diode (LED) light source. The controller receives the voltage and regulates a current of the LED light source based on a sensing signal indicating the voltage of the power source. The controller regulates the current of the LED light source to a first current level if the voltage of the power source is greater than a first voltage level, and to a second current level if the voltage of the power source is less than a second voltage level. The second voltage level is less than the first voltage level. The controller regulates the current of the LED light source to vary according to the sensing signal if the voltage of the power source is between the first voltage level and the second voltage level.
Abstract:
A DC/AC converter circuit structure for driving a plurality of cold cathode fluorescent lamps is described. A common-mode choke is used between the cold cathode fluorescent lamps. The common-mode choke balances the currents respectively flowing through the cold cathode fluorescent lamps.
Abstract:
A DC/AC converter circuit structure for driving a plurality of cold cathode fluorescent lamps is described. A common-mode choke is used between the cold cathode fluorescent lamps. The common-mode choke balances the currents respectively flowing through the cold cathode fluorescent lamps.
Abstract:
Embodiments in accordance with the present invention provide circuits and methods for driving light sources, e.g., a light-emitting diode (LED) light source. In one embodiment, a lamp includes a rectifier rectifying an AC voltage to a rectified AC voltage, an LED light source, and a switch coupled to the LED light source in series controlling a current through the LED light source according to a predetermined current reference. The LED light source and the switch coupled in series receive the rectified AC voltage while the switch is controlled linearly.
Abstract:
In one embodiment, a power system includes a first power source having a first voltage, a second power source having a second voltage, and a controller. The controller is coupled to the first power source and the second power source. The controller compares the first voltage with the second voltage, controls the first power source to charge the second power source via a first switch and a second switch in a charging mode when the first voltage is greater than said second voltage, and controls the second power source to power a load such as a light-emitting diode (LED) light source via the second switch and a third switch in a load-powering mode when the second voltage is greater than the first voltage.
Abstract:
A circuit structure for LCD backlight is disclosed in the present invention. The circuit structure includes an inverter topology, a current balance circuit, and a plurality of loads. The current balance circuit is coupled to the plurality of loads and capable of balancing current of N loads by using N/2−1 balance chokes. The circuit structure may further include a protection circuit which is coupled to the low voltage sides of the plurality of loads. The protection circuit is capable of sensing lamp voltages and providing a feedback signal to a controller. Furthermore, the protection circuit is composed of count-reduced and cost-competitive electronic elements.
Abstract:
A circuit for driving a load includes a power line, converter circuitry, and a controller. The power line is operable for providing an input current and an input voltage. The converter circuitry coupled to the power line is operable for converting the input voltage to a regulated voltage to drive the load, and for providing a current detection signal indicating whether a converter current flowing through the converter circuitry drops to a predetermined level. The controller coupled to the converter circuitry is operable for correcting a power factor of the circuit based on the current detection signal and the input voltage such that a waveform of the input current follows a waveform of the input voltage.