Abstract:
Disclosed herein are yellow-green and yellow-emitting aluminate based phosphors for use in white LEDs, general lighting, and LED and backlighting displays. In one embodiment of the present invention, the cerium-activated, yellow-green to yellow-emitting aluminate phosphor comprises the rare earth lutetium, at least one alkaline earth metal, aluminum, oxygen, at least one halogen, and at least one rare earth element other than lutetium, wherein the phosphor is configured to absorb excitation radiation having a wavelength ranging from about 380 nm to about 480 nm, and to emit light having a peak emission wavelength ranging from about 550 nm to about 600 nm.
Abstract:
Disclosed herein are cerium doped, garnet phosphors emitting in the yellow region of the spectrum, and having the general formula (Y,A)3(Al,B)5(O,C)12:Ce3+, where A is Tb, Gd, Sm, La, Sr, Ba, Ca, and/or Mg, and substitutes for Y, B is Si, Ge, B, P, and/or Ga, and substitutes for Al, and C is F, Cl, N, and/or S, where C substitutes for O. Relative to a solid-state-reaction method, the instant co-precipitation methods provide a more homogeneous mixing environment to enhance the distribution of the Ce3+ activator in the YAG matrix. Such a uniform distribution has the benefit of an increased emission intensity. The primary particle size of the as-prepared phosphor is about 200 nm, with a narrow distribution.
Abstract:
Novel metal oxide compositions are disclosed. These ferromagnetic or ferrimagnetic compositions have resitivities that vary between those of semiconducting and insulating materials, and they further exhibit Curie temperatures greater than room temperature (i.e., greater than 300 K). They are perovskite structures with the general chemical formulas (A1-xMx)BO3, (A1-xMx)(B′B″)O3 or A(B1-xMx)O3, where A can be a 1+, 2+ and 3+ charged ion; B can be a 5+, 4+, 3+ charged ion; B′ and B″ can be 2+, 3+, 4+, 5+ and 6+ charged ion. M is a magnetic ion dopant. X-ray diffraction patterns are presented for exemplary compositions.
Abstract:
Novel aluminum-silicate based orange-red phosphors, with mixed di- and trivalent cations are disclosed. The phosphors have the formula (Sr1−x−yMxTy)3−mEum(Si1−zAlz)O5, where M is at least one of Ba, Mg, Ca, and Zn in an amount ranging from 0≦x≦0.4. T is a trivalent metal in an amount ranging from 0≦y≦0. This phosphor is configured to emit visible light having a peak emission wavelength greater than about 580 nm. The phosphors may contain a halogen anion such as F, Cl, and Br, at least some of which is substitutionally positioned on oxygen lattice sites. The present aluminum-silicate phosphors have applications in white and orange-red illumination systems, as well as plasma display panels.
Abstract translation:公开了具有混合的二价和三价阳离子的新型硅酸铝基橙红色荧光体。 磷光体具有式(Sr 1-xy M x x x x x x x x>>>>>>>>>>>>>>>>>>>>> 其中M是Ba,Mg,Ca中的至少一种,其中M 1,Y 2,Z 3, 和范围为0 <= x <= 0.4的Zn。 T是0 <= y <= 0的量的三价金属。 该磷光体被配置为发射具有大于约580nm的峰值发射波长的可见光。 荧光体可以含有卤素阴离子如F,Cl和Br,其中至少一些取代位于氧格子位置上。 本发明的铝硅酸盐荧光体可用于白色和橙红色照明系统以及等离子体显示面板。
Abstract:
Novel phosphor systems for a white LED are disclosed. The phosphor systems are excited by a non-visible to near-UV radiation source having an excitation wavelength ranging from about 250 to 420 nm. The phosphor system may comprise one phosphor, two phosphors, and may include optionally a third and even a fourth phosphor. In one embodiment of the present invention, the phosphor is a two phosphor system having a blue phosphor and a yellow phosphor, wherein the long wavelength end of the blue phosphor is substantially the same wavelength as the short wavelength end of the yellow phosphor. Alternatively, there may be a wavelength gap between the yellow and blue phosphors. The yellow phosphor may be phosphate or silicate-based, and the blue phosphor may be silicate or aluminate-based. Single phosphor systems excited by non-visible radiation are also disclosed. In other embodiments of present invention, a single phosphor is used to produce white light illumination, the single phosphor having a broad emission spectrum with a peak intensity ranging from about 520 to 560 nm.
Abstract:
The present embodiments are directed to photovoltaic devices that convert sunlight into electrical energy. More specifically, the present embodiments include a phosphor-containing, wavelength-converting material for shifting higher energy light to a lower energy form, the latter being more suitable for the typical solar cell to convert to electricity. The absorption of the phosphor may range from about 280 to 460 nm. Advantageously, the phosphor component of the wavelength converter may be in the form of nano-particles embedded in a transparent matrix for reducing scattering losses.
Abstract:
Novel phosphor systems for a white LED are disclosed. The phosphor systems are excited by a non-visible to near-UV radiation source having an excitation wavelength ranging from about 250 to 420 nm. The phosphor system may comprise one phosphor, two phosphors, and may include optionally a third and even a fourth phosphor. In one embodiment of the present invention, the phosphor is a two phosphor system having a blue phosphor and a yellow phosphor, wherein the long wavelength end of the blue phosphor is substantially the same wavelength as the short wavelength end of the yellow phosphor. Alternatively, there may be a wavelength gap between the yellow and blue phosphors. The yellow phosphor may be phosphate or silicate-based, and the blue phosphor may be silicate or aluminate-based. Single phosphor systems excited by non-visible radiation are also disclosed. In other embodiments of present invention, a single phosphor is used to produce white light illumination, the single phosphor having a broad emission spectrum with a peak intensity ranging from about 520 to 560 nm.
Abstract:
Novel phosphor systems for a white LED are disclosed. The phosphor systems are excited by a non-visible to near-UV radiation source having an excitation wavelength ranging from about 250 to 420 nm. The phosphor system may comprise one phosphor, two phosphors, and may include optionally a third and even a fourth phosphor. In one embodiment of the present invention, the phosphor is a two phosphor system having a blue phosphor and a yellow phosphor, wherein the long wavelength end of the blue phosphor is substantially the same wavelength as the short wavelength end of the yellow phosphor. Alternatively, there may be a wavelength gap between the yellow and blue phosphors. The yellow phosphor may be phosphate or silicate-based, and the blue phosphor may be silicate or aluminate-based. Single phosphor systems excited by non-visible radiation are also disclosed. In other embodiments of present invention, a single phosphor is used to produce white light illumination, the single phosphor having a broad emission spectrum with a peak intensity ranging from about 520 to 560 nm.
Abstract:
Disclosed herein are green-emitting, garnet-based phosphors having the formula (Lu1-a-b-cYaTbbAc)3(Al1-dBd)5(O1-eCe)12:Ce,Eu, where A is selected from the group consisting of Mg, Sr, Ca, and Ba; B is selected from the group consisting of Ga and In; C is selected from the group consisting of F, Cl, and Br; and 0≦a≦1; 0≦b≦1; 0
Abstract translation:本文公开了具有式(Lu1-ab-cYaBbbAc)3(Al1-dBd)5(O1-eCe)12:Ce,Eu)的绿色发光的石榴石基荧光体,其中A选自Mg, Sr,Ca和Ba; B选自Ga和In; C选自F,Cl和Br; 和0 @ a @ 1; 0 @ b @ 1; 0
Abstract:
Disclosed herein are yellow-green and yellow-emitting aluminate based phosphors for use in white LEDs, general lighting, and LED and backlighting displays. In one embodiment of the present invention, the cerium-activated, yellow-green to yellow-emitting aluminate phosphor comprises the rare earth lutetium, at least one alkaline earth metal, aluminum, oxygen, at least one halogen, and at least one rare earth element other than lutetium, wherein the phosphor is configured to absorb excitation radiation having a wavelength ranging from about 380 nm to about 480 nm, and to emit light having a peak emission wavelength ranging from about 550 nm to about 600 nm.