Abstract:
The present invention provides variable spot size illuminators that provide a light spot on a treatment plane by utilizing a zoom lens to direct light received from an image of a light source formed on an intermediate image plane onto the treatment plane. The zoom lens allows varying the size of the treatment spot while ensuring that the treatment spot exhibits parfocality. An illuminator of the invention can be utilized for performing a number of ophthalmic surgical procedures, such as, photocoagulation, transpupillary thermal therapy, and photodynamic therapy.
Abstract:
A filter and method for filtering an optical beam are disclosed. One embodiment of the filter is an optical filter for filtering an incident light beam, comprising an optically effective material characterized by: a light transmittance of less than 1% for wavelengths below 420 nm; and a light transmittance for wavelengths complementary and near complementary to wavelengths below 420 nm that, combined with the transmittance for wavelengths below 420 nm, will yield a filtered light beam having a luminosity of about 90% and an excitation purity of 5% or less. The complementary wavelengths can be wavelengths above about 640 nm, wavelengths above about 660 nm, and/or wavelengths from about 540 nm to about 560 nm. Further, in one embodiment the difference between the light transmittance just below 420 nm and the light transmittance just above 420 nm can be greater than 90%. Above 420 nm, in some embodiments, the light transmittance can be arbitrarily determined.
Abstract:
Embodiments of the present invention provide a system and method for shaping an annular focal spot pattern to allow for more efficient optical coupling to a small gauge optical fiber. An embodiment of the present invention can include an illumination source operable to transmit an optical beam along an optical path, an optical fiber, and a correcting element positioned in the optical path between the illumination source and the optical fiber, the correcting element configured to reshape the optical beam to increase an amount of light received by the optical fiber.
Abstract:
A filter and method for filtering an optical beam are disclosed. One embodiment of the filter is an optical filter for filtering an incident light beam, comprising an optically effective material characterized by: a light transmittance of less than 1% for wavelengths below 420 nm; and a light transmittance for wavelengths complementary and near complementary to wavelengths below 420 nm that, combined with the transmittance for wavelengths below 420 nm, will yield a filtered light beam having a luminosity of about 90% and an excitation purity of 5% or less. The complementary wavelengths can be wavelengths above about 640 nm, wavelengths above about 660 nm, and/or wavelengths from about 540 nm to about 560 nm. Further, in one embodiment the difference between the light transmittance just below 420 nm and the light transmittance just above 420 nm can be greater than 90%. Above 420 nm, in some embodiments, the light transmittance can be arbitrarily determined. The optically effective material can be optical-grade glass, an optical-grade plastic or polymer, a thin-film dielectric coating, or an optical-grade glass or plastic coated with a dielectric coating. The optical filter can be mounted downstream of an illumination source exit aperture, wherein the illumination source produces the incident light beam, and upstream of a site to be illuminated by the filtered light beam. Alternatively, the optical filter can be operably mounted on a set of viewing optics of a surgical microscope to filter a reflected portion of a light beam produced by an illumination source and used to illuminate a site, such as a surgical site.
Abstract:
The present invention provides a surgical footswitch that includes a base, a pedal, an encoder assembly, a wireless interface, and an internal power generator. The pedal mounts upon the base and pivots. The encoder assembly couples to the pedal. As the pedal pivots, the encoder assembly translates the mechanical signal of the pedal into a control signal based on the pedals position and/or orientation. The wireless interface couples the encoder assembly to receive the control signal. The wireless interface also couples the surgical footswitch to a surgical console operable to control and direct surgical equipment. The wireless interface passes the control signal from the encoder to the surgical console, which then directs the surgical equipment based on the control signal. This wireless interface eliminates the tangle of wires or tethers, which may be a hazard in the surgical theater. The internal power generator translates footswitch movement into stored energy to eliminate potential failures of the footswitch during a procedure and overcome the need to replace batteries within the footswitch.
Abstract:
An ophthalmic apparatus for precisely positioning an optical instrument, such as a wavefront aberrometer, in three dimensions with respect to a patient's eye. The ophthalmic apparatus may include an optical instrument directed in a first direction toward a target area to receive light therefrom and a camera directed in a second direction toward the target area to receive light therefrom, the first and second directions being non-parallel. The camera may include imaging optics to form an optical image on a photodetector array using light reflected from the target area. The ophthalmic apparatus may also include a processor configured to correlate a position of the optical image on the photodetector array with the distance between the optical instrument and the target area.
Abstract:
A fiberoptic illumination system having an attenuator with a "multiple wedge" aperture that more uniformly attenuates the light beam striking the fiberoptic without changing the color temperature of the light beam or affecting the exit divergence angle of the light beam. The system includes an optical housing design having orthogonal lights paths that allows two fiberoptics to be illuminated from the same bulb, two bulbs located in primary and back-up positions, respectively, mounted on a rotating carousel and a retinal protection filter that filters out wavelengths of light harmful to the retina.
Abstract:
The present invention provides a surgical footswitch that includes a base, a pedal, an encoder assembly, a wireless interface, and an internal power generator. The pedal mounts upon the base and pivots. The encoder assembly couples to the pedal. As the pedal pivots, the encoder assembly translates the mechanical signal of the pedal into a control signal based on the pedals position and/or orientation. The wireless interface couples the encoder assembly to receive the control signal. The wireless interface also couples the surgical footswitch to a surgical console operable to control and direct surgical equipment. The wireless interface passes the control signal from the encoder to the surgical console, which then directs the surgical equipment based on the control signal. This wireless interface eliminates the tangle of wires or tethers, which may be a hazard in the surgical theater. The internal power generator translates footswitch movement into stored energy to eliminate potential failures of the footswitch during a procedure and overcome the need to replace batteries within the footswitch.
Abstract:
A macular pigment reflectometer is handheld, light, and portable. It can be provided as a part of a self-contained system. The self-contained system includes a docking station in which the macular pigment reflectometer is placed between uses. The docking station is used to recharge the battery of the handheld macular pigment reflectometer. The docking station also has one or more types of communication ports, such as one for a wired or wireless internet connection, through which the handheld macular pigment reflectometer can communicate with a computer or an electronic medical records system. The instrument operates in a pulsed operating mode wherein relative instrument-to-eye motion is reduced and, preferably, nearly eliminated. The handheld macular pigment reflectometer contains an on-board spectrometer which is designed to capture spectra in very short intervals of time. A trigger on the instrument allows for a rapid, intuitive, and sequential alignment followed by rapid data gathering.
Abstract:
Models of anatomical parts and methods utilizing and fabricating such anatomical models are provided. The model can include an assembly of one or more optically transmissive media having a first portion and a second portion. The one or more optically transmissive media can be configured to provide similar optical properties as that between two regions of the anatomical part. For example, in an example eye model, the two regions can be a corneal surface and/or retina regions of an eye. A rendered retina can be formed in the second portion of the assembly and can be representative of the retina of the eye. The rendered retina can have one or more features associated with the retina of the eye.