Abstract:
Chronic myelogenous leukemia (CML), and in particular imatinib resistant CML is treated using compositions and methods in which a Rad51-inhibitor and a kinase inhibitor are administered. Most preferably, the Rad51 inhibitor comprises an indolyl isoquinoline structure and the kinase inhibitor is a BCR-ABL inhibitor.
Abstract:
Disclosed are methods of controlling cell cycle progression by introducing into a cell to be controlled a composition selected from the group consisting of p56RB protein, a fragment of the p56RB protein, and the gene encoding p56RB protein to alter the cell cycle progression while maintaining the viability of the cell. The p56RB protein has been found to have the unexpected and surprising characteristic of being soluble in low concentrations of glycerol, thereby enhancing its value in pharmaceutical applications and the gene encoding p56RB when delivered to the hyperproliferating cell inhibits cellular proliferation.
Abstract:
This invention relates in general to a phosphoprotein product of the retinoblastoma susceptibility gene. In particular, this invention relates to a phosphoprotein ppRB.sup.110 primarily located in the cell nucleus which has a DNA binding activity. The invention also relates to the amino acid sequence of the phosphoprotein and to the specific purified anti-retinoblastoma phosphoprotein antibody. The invention further relates to a method of diagnosing retinoblastoma and other retinoblastoma gene involved cancers, treating such kind of cancers and regulating the oncogenicity of other genes.
Abstract:
A method that produces substantial quantities of a desired polypeptide, by delivering genetic material into insect cells. For example, cloned genes, or gene fragments or, derivates may be defined, utilizing as appropriate vector, into host cells for high level production of high purity protein in substantial quantities.
Abstract:
A method for gene therapy for cancers wherein chromosomal location of an inactive or defective cancer suppressing gene is established, a replacement gene which is preferably cloned is then used to replace the inactive or defective cancer suppressing gene in the chromosome. In addition to its uses in therapy, the present invention provides a means for prophylactically treating individuals having a genetic predisposition to cancer and provides an animal model for testing for carcinogenicity of environmental substances.
Abstract:
This invention relates in general to a phosphoprotein product of the retinoblastoma susceptibility gene. In particular, this invention relates to a phosphoprotein ppRB.sup.110 primarily located in the cell nucleus which has a DNA binding activity. The invention also relates to the amino acid sequence of the phosphoprotein and to the specific purified anti-retinoblastoma phosphoprotein antibody. The invention further relates to a method of diagnosing retinoblastoma and other retinoblastoma gene involved cancers, treating such kind of cancers and regulating the oncogenicity of other genes.
Abstract:
Contemplated compounds disrupt interaction between BRCA2 and RAD51, likely by binding to RAD51. Based on the crucial role of the BRCA2-RAD51 complex formation in DNA repair and the role of RAD51 in the control of entry into S-phase from G1, numerous compositions and methods are presented. Among other advantageous uses, contemplated compounds may be employed as protective agents for non-neoplastic cells in chemotherapy before exposure of the cells to a chemotherapeutic drug, and/or as DNA-damage sensitizer for neoplastic cells.
Abstract:
Chronic myelogenous leukemia (CML), and in particular imatinib resistant CML is treated using compositions and methods in which a Rad51-inhibitor and a kinase inhibitor are administered. Most preferably, the Rad51 inhibitor comprises an indolyl isoquinoline structure and the kinase inhibitor is a BCR-ABL inhibitor.
Abstract:
A novel purified phosphoprotein designated mitosin is provided by this invention. Also provided is the amino acid sequence of mitosin, active fragments of mitosin, and a nucleic acid molecule encoding mitosin. Diagnostic and therapeutic methods of using the protein and nucleic acid molecule are also provided. The nucleic acid molecules are useful to recombinantly produce mitosin and for use as probes. The compositions and methods of this invention are based on the discovery that the intracellular presence of mitosin is necessary for the cell to enter the M phase of mitosis, and that the degradation of mitosin is necessary for the cell to advance to the next stage. Thus, an anti-mitsoin antibody, or a mutant or non-functional analog of mitosin, would inhibit the mitotic cell cycle by preventing cells from entering the M phase, and overexpression of mitosin, or a functional equivalent thereof, would inhibit the cycle by preventing cells from leaving the M phase. Such overexpression could be achieved either by addition of the protein or through gene therapy, i.e., delivery of a gene encoding the protein or a functional equivalent thereof.
Abstract:
Certain embodiments of the present invention provide selected compounds having a molecular structure according to Formula 1: In Formula 1, Z is —CO—, —SO—, or —SO2—; Ar is phenyl, heteroaryl, or heterocycloalkyl; Het is heteroaryl; R is R″, X, or NR1R2; R′ is R3, or OR3; R″ is R4, or OR4; R1 and R2 are each independently H, alkyl, or acyl; R3 is H, heteroaryl, or alkyl; R4 is H, heteroaryl, or CnH2n+1 (n>2); and X is F, Br, I, CN, or NO2. In some embodiments, compounds having a molecular structure according to Formula 1 have the property of inhibiting a growth of a cell line selected from HeLa and MB468 with a sub-micromolar IC50.
Abstract translation:本发明的某些实施方案提供了具有根据式1的分子结构的所选化合物:在式1中,Z是-CO-,-SO-或-SO 2 - ; Ar是苯基,杂芳基或杂环烷基; Het是杂芳基; R是R“,X或NR 1 R 2; R'是R3或OR3; R“是R 4或OR 4; R1和R2各自独立地为H,烷基或酰基; R3是H,杂芳基或烷基; R 4是H,杂芳基或C n H 2n + 1(n> 2); X是F,Br,I,CN或NO 2。 在一些实施方案中,具有根据式1的分子结构的化合物具有以亚微米IC 50抑制选自HeLa和MB468的细胞系的生长的性质。