Abstract:
A magnetic logic element with toroidal magnetic multilayers (5,6,8,9). The magnetic logic element comprises a toroidal closed section which is fabricated by etching a unit of magnetic multilayers (5,6,8,9) deposited on a substrate. Optionally, the magnetic logic element may also comprise a metal core (10) in the closed toroidal section. Said magnetic multilayers (5,6,8,9) unit is arranged on the input signal lines A, B, C and an output signal line O, and then is made into a closed toroidal. Subsequently, on the toroidal magnetic multilayered unit (5,6,8,9), the input signal lines A′, B′, C′ and an output signal line O′ are fabricated by etching. This magnetic logic element can reduce the demagnetization field and the shape anisotropy effectively, leading to the decrease of the reversal field of magnetic free layer. Furthermore, this magnetic logic element has stable working performance and long operation life of the device.
Abstract:
Each layer in the magnetic multilayer film is a closed ring or oval ring and the magnetic moment or flux of the ferromagnetic film in the magnetic unit is in close state either clockwise or counterclockwise. A metal core is put in the geometry center position in the close-shaped magnetic multilayer film. The cross section of the metal core is a corresponding circular or oval. A MRAM is made of the closed magnetic multilayer film with or without a metal core. The close-shaped magnetic multilayer film is formed by micro process method. The close-shaped magnetic multilayer film can be used broadly in a great variety of device that uses a magnetic multilayer film as the core, such as MRAM, magnetic bead in computer, magnetic sensitive sensor, magnetic logic device and spin transistor.
Abstract:
The invention discloses a MRAM (Magnetoresistive RAM) based on vertical current writing and its control method, the operation of information writing in the MRAM unit is completed by the corporate effect of the magnetic field generated by the current parallel to the MFC unit and the other current vertical to the MFC unit and passing through this unit. The advantage of such structure is: eliminating a word line (WL) of the prior art especially for information writing, reducing the number of the metal wiring layers and the contact holes, and reducing the complexity of MRAM's structure, and difficulty and cost of manufacturing process.
Abstract:
The invention discloses a MRAM (Magnetoresistive RAM) based on vertical current writing and its control method, the operation of information writing in the MRAM unit is completed by the corporate effect of the magnetic field generated by the current parallel to the MFC unit and the other current vertical to the MFC unit and passing through this unit. The advantage of such structure is: eliminating a word line (WL) of the prior art especially for information writing, reducing the number of the metal wiring layers and the contact holes, and reducing the complexity of MRAM's structure, and difficulty and cost of manufacturing process.