Abstract:
The present invention particularly relates to a waste glass recovery method for manufacturing glass beads for road markings, and more particularly, to a waste glass recovery method for manufacturing glass beads which includes recovering waste glass such as automobile waste glass, solar panel waste glass, and general cullet, classifying and removing impurities contained in the glass.
Abstract:
The present invention relates to a sliding armrest for a vehicle including: a lower cover having a rotatable hook that is detachably coupled to a console and opening and closing a storage space of the console; an upper cover disposed above the lower cover and slid between a protruding position in a length direction and an initial position; a knob means rotatably disposed at the upper cover and rotating the hook to detach the hook from a console; and a stopper disposed at the upper cover and fastened to the lower cover to restrain sliding of the upper cover or released from the lower cover corresponding to an operation of the knob means to allow the sliding of the upper cover.
Abstract:
A method of forming a conductive pattern includes forming a trench on a substrate, and providing a conductive ink to the trench while an electric field is generated between the substrate and a nozzle which ejects the conductive ink.
Abstract:
Provided is a method and system for estimating a channel in a wireless communication system. An interference coefficient is calculated based on a known structure of a pilot, and a channel value in a frequency domain is estimated. A channel value in a time domain is obtained by transforming the channel value in the frequency domain and the channel delay values are subtracted from the channel value in the time domain, thereby cancelling interference.
Abstract:
A method and an apparatus for acquiring initial synchronization in a wireless communication system are provided. A relay station determines whether or not the initial synchronization is acquired, determines a start position of a frame using a peak of an autocorrelation signal detected based on a preamble and a relay-amble (R-amble) received from a base station in the case in which the initial synchronization is not acquired, and determines the start position of the frame using a peak of an autocorrelation signal detected based on the relay-amble received from the base station in the case in which the initial synchronization is acquired.
Abstract:
Provided is a thin film transistor and thin film transistor panel array. The thin film transistor includes: a substrate; a gate electrode disposed on the substrate; a semiconductor layer disposed on the substrate and partially overlapping with the gate electrode; a source electrode and a drain electrode spaced apart from each other with respect to a channel region of the semiconductor layer; an insulating layer disposed between the gate electrode and the semiconductor layer; and a barrier layer disposed between the semiconductor layer and the source electrode and between the semiconductor layer and the drain electrode, in which the barrier layer comprises graphene. An ohmic contact is provided based on the type of material used for the semiconductor layer.
Abstract:
Provided is a technique for mutual authentication between different kinds of objects (devices, apparatuses, users, etc.) by expanding the kinds of objects that are subject to authentication, such as authentication between users, authentication between users and an apparatuses (devices, equipment, terminals, etc.), and authentication between apparatuses (devices, equipment, terminals, etc.).
Abstract:
A manufacturing method of a thin film transistor array panel includes forming a gate line including a gate electrode on a substrate; forming a gate insulating layer on the gate line; forming a semiconductor layer on the gate insulating layer; forming a data line including a data conductive layer pattern on the semiconductor layer and crossing the gate line; forming a planarization layer on the data conductive layer pattern; dry-etching the planarization layer to expose a portion of the data conductive layer pattern overlapping the gate electrode; wet-etching the exposed data conductive layer pattern; and exposing a portion of the semiconductor layer overlapping the gate electrode.
Abstract:
Disclosed is an automatic gain control device in an orthogonal frequency division multiplexing system. A variable gain amplifier controls a gain of an input signal; an energy calculator calculates an energy of the input signal; a truncator accumulates the calculated energies, finds an average thereof, and generates a DC offset of the input signal; a subtracter subtracts a predefined reference value from the DC offset, and outputs a signal; and an RC filter feeds the value output by the subtracter back to the variable gain amplifier so that the value output by the subtracter may be used for an automatic gain control. The predefined reference value given to be 4.Ov is a reference power generated based on a saturation to RMS ratio for minimizing the bit error rate of the orthogonal frequency division multiplexing system.
Abstract:
The present invention relates to a method for automatic gain control (AGC) before an initial synchronization of a mobile station modem in OFDM system, and an apparatus thereof The AGC apparatus includes: an initial synchronization inspector that verifies whether an initial synchronization for an input block sample (k) signal has been performed; a frame divider that divides a frame into predetermined intervals B(k) for the input block sample(k) signal in the case that the initial synchronization has not been performed; a reference value inspector that compares a difference value Pref−Pcalc, between a predetermined reference value Pref and sample data average energy Pcalc, with a predetermined value; a count controller that increases or decreases the count when the difference value Pref−Pcalc compared by the reference value inspector is greater or less than the predetermined value; a count inspector that inspects whether the count is greater or less than 0 when the input block sample (k) reaches a maximum value MAX; and a gain controller which increases or decreases the gain, level by level, according to the count inspection result of the count inspector.