Abstract:
Various high speed shielded cables are used in combination with a connector assembly. The connector assembly includes a plurality of electrical terminations in electrical contact with the conductor sets of the cable at a first end of the cable, the electrical terminations configured to make electrical contact with corresponding mating electrical terminations of a mating connector and at least one housing configured to retain the plurality of electrical terminations in a planar, spaced apart configuration.
Abstract:
Examples of electrical connectors that incorporate electromagnetic interference (EMI) absorbing materials are described. In one example, an electrical connector includes a first pair of conductors, a second pair of conductors, and electromagnetic interference (EMI) absorbing material at least partially separating the first pair of conductors from the second pair of conductors. Each of the first and second pairs of conductors defines one of a differential pair or a signal conductor/ground pair. The EMI absorbing material may be configured to attenuate, primarily by absorption, an electromagnetic field generated due to transmission of electrical signals via one of the first pair and second pair of conductors to reduce the electromagnetic inference from the electromagnetic field on the other of the first pair and second pair of conductors.
Abstract:
Wireless connectors and communication systems are described including a first communication device configured to emit a modulated signal, a second communication device configured to receive the emitted modulated signal and a waveguide disposed between the first and second communication devices and configured to wirelessly receive the emitted modulated signal from a first end of the waveguide, guide the received signal from the first end to an opposite second end of the waveguide, and wirelessly transmit the guided signal from the second end to the second communication device. In some embodiments, the telescopic waveguide includes a plurality of guiding sections, each guiding section being configured to slide within or over an adjacent guiding section inwardly to reduce a length of the telescopic waveguide and outwardly to increase the length of the telescopic waveguide.
Abstract:
An optical connector assembly includes first and second optical ferrules. Each of the first and second optical ferrules includes a front portion extending forwardly from a rear portion. The rear portion includes a top side and a bottom side. The bottom side of the rear portion defines a recessed portion. The first and second optical ferrules mate with each other such that the front portion of each of the first and second ferrules is disposed in the recessed portion of the other one of the first and second ferrules. Discrete retainers are assembled to opposite ends of the mated first and second ferrules. Each of the retainers defines a resilient portion resiliently forcing the front portion of one of the first and second mated ferrules against the other one of the first and second optical ferrules.
Abstract:
An optical connector assembly includes first and second optical ferrules. Each of the first and second optical ferrules includes a front portion extending forwardly from a rear portion. The rear portion includes a top side and a bottom side. The bottom side of the rear portion defines a recessed portion. The first and second optical ferrules mate with each other such that the front portion of each of the first and second ferrules is disposed in the recessed portion of the other one of the first and second ferrules. Discrete retainers are assembled to opposite ends of the mated first and second ferrules. Each of the retainers defines a resilient portion resiliently forcing the front portion of one of the first and second mated ferrules against the other one of the first and second optical ferrules.
Abstract:
An optical connector includes a housing having a resilient member and an optical ferrule. The optical ferrule includes a plurality of attachment areas for receiving and securing a plurality of optical waveguides and a light redirecting side for changing a direction of light received from an optical waveguide. The optical connector is configured such that when an optical waveguide is received and secured in any of the attachment areas and light from the optical waveguide propagates along an optical path, the resilient member is not in the optical path. When the optical ferrule mates with a mating optical ferule, the resilient member is resiliently deformed to resiliently force the optical ferrule against the mating optical ferrule.
Abstract:
An electrical cable (1000) including a plurality of substantially parallel insulated conductors (100) is described. Each insulated conductor (100) includes an electrically conductive inner conductor (200) co-extensive and covered with an insulating layer (300). At least a portion of a periphery of each insulated conductor (100) may be encompassed by a substantially co-extensive electrically conductive shield (400). For each insulated conductor (100), portions of the insulating layer (300) are removed from the top side (1200) of the cable (1000) to expose a portion of the inner conductor (200) of the insulated conductor (100). The insulated conductor (100) is adapted to mate with an electrically conductive mating conductor (500) at the exposed portion (210) of the inner conductor (200).
Abstract:
An electrical contact includes a longitudinal first body portion, a longitudinal second body portion, a terminal portion, and a contact portion. The longitudinal first body portion has a terminal end, a first transition end opposite the terminal end, and a major surface generally lying in a first plane. The longitudinal second body portion has a contact end, a second transition end opposite the contact end, and a major surface generally lying in a second plane intersecting the first plane. The contact end is distal to the first transition end. The terminal portion extends from the first body portion at the terminal end. The contact portion extends from the second body portion at the contact end.
Abstract:
Examples of electrical connectors that incorporate electromagnetic interference (EMI) absorbing materials are described. In one example, an electrical connector includes a first pair of conductors, a second pair of conductors, and electromagnetic interference (EMI) absorbing material at least partially separating the first pair of conductors from the second pair of conductors. Each of the first and second pairs of conductors defines one of a differential pair or a signal conductor/ground pair. The EMI absorbing material may be configured to attenuate, primarily by absorption, an electromagnetic field generated due to transmission of electrical signals via one of the first pair and second pair of conductors to reduce the electromagnetic inference from the electromagnetic field on the other of the first pair and second pair of conductors.
Abstract:
Various high speed shielded cables are used in combination with a connector assembly. The connector assembly includes a plurality of electrical terminations in electrical contact with the conductor sets of the cable at a first end of the cable, the electrical terminations configured to make electrical contact with corresponding mating electrical terminations of a mating connector and at least one housing configured to retain the plurality of electrical terminations in a planar, spaced apart configuration.