Abstract:
Nozzles and method of making the same are disclosed. The disclosed nozzles have at least one nozzle through-hole therein, wherein the at least one nozzle through-hole exhibits a coefficient of discharge, CD, of greater than about 0.50. Fuel injectors containing the nozzle are also disclosed. Methods of making and using nozzles and fuel injectors are further disclosed.
Abstract:
An optical connector includes a first attachment area for receiving and permanently attaching to an optical waveguide. A light coupling unit is disposed and configured to move translationally and not rotationally within the housing of the connector. The light coupling unit includes a second attachment area for receiving and permanently attaching to an optical waveguide received and permanently attached at the first attachment area. The light coupling unit also includes light redirecting surface. The light redirecting surface is configured such that when an optical waveguide is received and permanently attached at the first and second attachment areas, the light redirecting surface receives and redirects light from the optical waveguide. The optical waveguide limits, but does not prevent, a movement of the light coupling unit within the housing.
Abstract:
An optical connector includes a first attachment area for receiving and permanently attaching to an optical waveguide. A light coupling unit is disposed and configured to move translationally and not rotationally within the housing of the connector. The light coupling unit includes a second attachment area for receiving and permanently attaching to an optical waveguide received and permanently attached at the first attachment area. The light coupling unit also includes light redirecting surface. The light redirecting surface is configured such that when an optical waveguide is received and permanently attached at the first and second attachment areas, the light redirecting surface receives and redirects light from the optical waveguide. The optical waveguide limits, but does not prevent, a movement of the light coupling unit within the housing.
Abstract:
A method of fabricating a fuel injector nozzle comprising the steps of: (a) forming a first microstructured pattern in a first material; (b) replicating the first microstructured pattern in a second material to make a first mold comprising a second microstructured pattern in the second material; (c) replicating the second microstructured pattern in a third material to make a second mold comprising a third microstructured pattern comprising a plurality of microstructures in the third material; (d) replicating the third microstructured pattern in a metal material to make a replicated structure; and (e) removing the third material resulting in a nozzle having a plurality of through-holes through the metal material and corresponding to the plurality of microstructures in the third microstructured pattern. Each of the plurality of through-holes has a hole wall connecting a hole entry to a hole exit, and the hole wall of at least one through-hole has a side that curves from its hole entry to its hole exit.
Abstract:
Methods of making nozzles are disclosed. More specifically, methods of making nozzles that may be used as components of a fuel injection system are disclosed.
Abstract:
Methods of making fuel nozzles are described. More specifically, methods of making fuel nozzles including injection molding are described. The injection molding may include polymer injection molding, powder injection molding, or micro powder injection molding, including micro metal injection molding. The formation of microstructures in the described methods may use the selective exposure of a material capable of undergoing a multiphoton reaction.
Abstract:
An optical connector includes a first attachment area for receiving and permanently attaching to an optical waveguide. A light coupling unit is disposed and configured to move translationally and not rotationally within the housing of the connector. The light coupling unit includes a second attachment area for receiving and permanently attaching to an optical waveguide received and permanently attached at the first attachment area. The light coupling unit also includes light redirecting surface. The light redirecting surface is configured such that when an optical waveguide is received and permanently attached at the first and second attachment areas, the light redirecting surface receives and redirects light from the optical waveguide. The optical waveguide limits, but does not prevent, a movement of the light coupling unit within the housing.
Abstract:
Methods of electroforming fuel injector nozzle structures such as, e.g., nozzle plates, valve guides, combinations of nozzle plates and valve guides, etc., as well as other articles incorporating microstructured features. The methods described herein can be used to electroform articles with high aspect ratio features in close proximity while reducing the likelihood of void formation during the electroforming process.
Abstract:
Methods of manufacturing fuel injector nozzle structures such as, e.g., nozzle plates, valve guides, combinations of nozzle plates and valve guides, etc., as well as other articles incorporating microstructured features. The methods may employ multiphoton processes to form microstructured patterns on a three-dimensional structured surface to provide nozzle structures and other articles that include finished microstructured features such as, e.g., through-holes extending from one or more cavities, where at least a portion of the three-dimensional structured surface is used to form the cavities. Forming a microstructured pattern on a three-dimensional structured surface can reduce the time needed to form nozzle structures that include microstructured features and other nozzle structure features (e.g., cavities) by avoiding the need to form the other nozzle structure features using the multiphoton processes.
Abstract:
Illumination articles are described. More specifically, illumination articles that include a wearable device configured for wearing on the head of a wearer, a lightguide and light sources for emitting light into the lightguide are described. The illumination articles allow for wearable devices that uniformly illuminate a working area at high brightness without providing excessive glare to observers.