Abstract:
An encapsulated MEMS device includes stress-relief trenches in a region of its substrate that surrounds the movable micromachined structures and that is covered by a cap, such that the trenches are fluidly exposed to a cavity between the substrate and the cap. A method of fabricating a MEMS device includes fabricating stress-relief trenches through a substrate and fabricating movable micromachined structures, and capping the device prior art encapsulating the device.
Abstract:
In one aspect, the disclosure is directed to a MEMS device. The MEMS device includes a silicon-based movable MEMS sensor element. The MEMS device also includes a plurality of wells formed into at least one surface of the movable MEMS sensor element. Each well is filled with at least one metal so as to increase the effective mass of the movable MEMS sensor element. The metal may be tungsten or tantalum, or an alloy with tungsten or tantalum.
Abstract:
A single-axis tilt-mode microelectromechanical accelerometer structure. The structure includes a substrate having a top surface defined by a first end and a second end. Coupled to the substrate is a first asymmetrically-shaped mass suspended above the substrate pivotable about a first pivot point on the substrate between the first end and the second end and a second asymmetrically-shaped mass suspended above the substrate pivotable about a second pivot point on the substrate between the first end and the second end. The structure also includes a first set of electrodes positioned on the substrate and below the first asymmetrically-shaped mass and a second set of electrodes positioned on the substrate and below the second asymmetrically-shaped mass.
Abstract:
An encapsulated MEMS device includes stress-relief trenches in a region of its substrate that surrounds the movable micromachined structures and that is covered by a cap, such that the trenches are fluidly exposed to a cavity between the substrate and the cap. A method of fabricating a MEMS device includes fabricating stress-relief trenches through a substrate and fabricating movable micromachined structures, and capping the device prior art encapsulating the device.