Abstract:
The present invention provides an improved hydrogenation processes wherein heat is efficiently managed so that catalyst productivity is optimized. More particularly, in the processes of the present invention, a nonaqueous solvent is added to a reactant to provide a nonaqueous solvent/reactant mixture that can act as a heat sink and absorb at least a portion of the heat generated within the reactor. Desirably, a reaction product, or a solvent with a minimal number of hydroxyl groups, is utilized so that the formation of unwanted byproducts can be minimized.
Abstract:
An electrochemical cell having improved current efficiency and a method for electrochemically reacting a liquid electrolyte with a gas in an electrochemical cell. The cell has at least two electrodes separated by a cell separator wherein at least one of said electrodes is a porous, self-draining, gas diffusion electrode. In one embodiment of the invention, an electrolyte is flowed through said cell separator into a porous, self-draining electrode and simultaneously the electrode is fed with a mixture of a reactive gas and water or an electrolyte. In another embodiment of the invention in which the cell separator is an ion exchange permselective membrane, a mixture of a reactive gas and an electrolyte are fed to the porous, self-draining electrode. Preferably said porous, self-draining electrode is a cathode.