Abstract:
The invention is an integrally blow-moulded bag-in-container obtainable by blow-moulding an injection moulded multi-layer preform. The bag-in-container includes an inner layer forming the bag and an outer layer forming the container, and a single opening, the mouth, fluidly connecting the volume defined by the bag to the atmosphere. The container further includes at least one interface vent fluidly connecting the interface between inner and outer layers to the atmosphere, wherein the bag is anchored to the outer layer at at least one point remote from the single opening and interface vent. The invention also relates to a process and a mould for the production of the blow-moulded bag-in-container.
Abstract:
A beverage dispenser has a housing in which a first liquid inlet is connectable to a base liquid source. The housing also contains a second liquid inlet connectable to a base liquid source or to a pressurized gas source and a pair of jet mixers. First and second liquid lines connect the respective first and second liquid inlets and jet mixers. A first ingredient container contains a first beverage ingredient, the pod or capsule provided in a first ingredient container receiving means, and a second ingredient container containing a second beverage ingredient, the ingredient container provided in a second ingredient container receiving means. The first and second ingredient containers are configured such that upon providing a liquid stream in the respective liquid lines, the beverage ingredient is discharged from the ingredient container into the liquid stream. A beverage outlet is in liquid communication with the jet mixer.
Abstract:
The invention is an integrally blow-moulded bag-in-container and preform for making it. The bag-in-container has an inner layer forming the bag and an outer layer forming the container, and a mouth fluidly connecting the volume defined by the bag to the atmosphere. The container further has at least one interface vent fluidly connecting the interface between inner and outer layers to the atmosphere, wherein the at least one vent runs parallel to the interface between inner and outer layers and opens to the atmosphere at a location adjacent to, and oriented coaxially with the bag-in-container's mouth. Processes for manufacturing a preform and a bag-in-container as defined above are defined too.
Abstract:
The invention is an integrally blow-moulded bag-in-container obtainable by blow-moulding an injection moulded multi-layer preform. The bag-in-container includes an inner layer forming the bag and an outer layer forming the container, and a single opening, the mouth, fluidly connecting the volume defined by the bag to the atmosphere. The container further includes at least one interface vent fluidly connecting the interface between inner and outer layers to the atmosphere, wherein the bag is anchored to the outer layer at at least one point remote from the single opening and interface vent. The invention also relates to a process and a mould for the production of the blow-moulded bag-in-container
Abstract:
The invention is an integrally blow-moulded bag-in-container obtainable by blow-moulding an injection moulded multi-layer preform. The bag-in-container includes an inner layer forming the bag and an outer layer forming the container, and a single opening, the mouth, fluidly connecting the volume defined by the bag to the atmosphere. The container further includes at least one interface vent fluidly connecting the interface between inner and outer layers to the atmosphere, wherein the bag is anchored to the outer layer at at least one point remote from the single opening and interface vent. The invention also relates to a process and a mould for the production of the blow-moulded bag-in-container.
Abstract:
The invention is an integrally blow-moulded bag-in-container and preform for making it. The bag-in-container has an inner layer forming the bag and an outer layer forming the container, and a mouth fluidly connecting the volume defined by the bag to the atmosphere. The container further has at least one interface vent fluidly connecting the interface between inner and outer layers to the atmosphere, wherein the at least one vent runs parallel to the interface between inner and outer layers and opens to the atmosphere at a location adjacent to, and oriented coaxially with the bag-in-container's mouth. Processes for manufacturing a preform and a bag-in-container as defined above are defined too.
Abstract:
The present invention relates to an integrally blow-moulded bag-in-container (2) and preform (1, 1′) for blow-moulding the bag-in-container. An inner layer (11) and an outer layer (12) are used, wherein the preform forms a two-layer container upon blow-moulding, and wherein the obtained inner layer of said container releases from the thus obtained outer layer upon introduction of a gas at a point of interface (14) between the two layers. At least one of the inner and outer layers includes at least one additive allowing both inner and outer layers to reach their respective blow-moulding temperatures substantially simultaneously.
Abstract:
A preform for an integrally blow-moulded bag-in-container uses an inner layer and an outer layer, wherein the preform forms a two-layer container upon blow-moulding, and wherein the obtained inner layer of the container releases from the thus obtained outer layer upon introduction of a gas at a point of interface between the two layers. At least one of the inner and outer layers includes at least one additive allowing both inner and outer layers to reach their respective blow-moulding temperatures substantially simultaneously.
Abstract:
A preform for an integrally blow-moulded bag-in-container uses an inner layer and an outer layer, wherein the preform forms a two-layer container upon blow-moulding, and wherein the obtained inner layer of the container releases from the thus obtained outer layer upon introduction of a gas at a point of interface between the two layers. At least one of the inner and outer layers includes at least one additive allowing both inner and outer layers to reach their respective blow-moulding temperatures substantially simultaneously.
Abstract:
A kit for dispensing a beverage through a dispense tube comprising a dispense valve, the kit comprising: •—an assembly of a keg (1) and a closure (2), the keg (1) and closure (2) assembly comprising: •a. an inner vent mechanism incorporated in the closure or at the interface of keg and closure, the inner vent mechanism configured to fluidly connect the inner space and intermediate space when an overpressure of predetermined value Poo occurs in the flexible bag; and •b. a safety relief mechanism (8a, 8b, 27) incorporated in the closure (2) or at an interface of closure (2) and keg (1), the safety relief mechanism designed to relief pressure when an overpressure h of predetermined value P01 occurs in the keg, wherein Po1 is larger than Poo; •—a keg connector (38) comprising a base body and: •a) coupling means (40) for connecting the keg connector (31) to the neck portion (5) of the keg (1) or to the closure (2) of said keg; •b) a dispense connector (38a) comprising a dispense tip (38b); •c) a gas connector (39a), comprising a gas tip (39b); characterized in that said connector comprises an overpressure relief vent (41) and an overpressure relief valve (42) to relief pressure when an overpressure in the gas tip (39b) reaches a predetermined overpressure value P02 and in that at least one of following conditions are fulfilled: •i The predetermined overpressure P02 at which the relief valve opens is smaller than Po1; •ii the coupling of the keg connector to the keg or closure increases the overpressure Po1 needed to activate the overpressure mechanism in the closure or at the interface of keg and closure to an overpressure Po1′ larger than Po1, with Po1′ being larger than P02.