Abstract:
A wireless local area network (WLAN) station (STA) reports, with a medium access control (MAC) frame, a buffer status of an urgent traffic identifier (TID) to a second STA. In some embodiments, the second STA is also an access point (AP). The delay in reporting is reduced by providing a buffer status report for the urgent TID in a data frame being transmitted to carry data for a current TID. The buffer status report, in some embodiments, provides the value of the urgent TID. In some embodiments, the buffer status report provides an indication of the amount of data in a buffer corresponding to the urgent TID. In some embodiments, the buffer status report is based on an aggregated measure of more than one buffer with data awaiting transmission. The transmission of the MAC frame, in some embodiments, is unsolicited.
Abstract:
Managing orthogonal frequency division multiple access (OFDMA) uplink acknowledgements is described herein. An example system can include an interface circuit to generate a physical layer convergence protocol data unit (PPDU) including a physical layer preamble, a first sub-channel field corresponding to a first station, and a second sub-channel field corresponding to a second station. The first sub-channel field can carry a first unicast trigger corresponding to the first station, and the second sub-channel field can carry a second unicast trigger corresponding to the second station. The interface circuit can also transmit the PPDU to the first and second stations.
Abstract:
A station (STA) of a wireless local area network (WLAN) transitions implicitly between power management (PM) modes or PM states, without providing an explicit indication of the PM mode/state change to an access point (AP) of the WLAN. Transitions include changes between an active mode and a power save (PS) mode, or between an awake state and a doze state of the PS mode. Transitions occur immediately after receipt of a beacon indicating pending data for the STA, after an offset time indicated in the beacon, or at a specific wake time negotiated with the AP. After data reception is complete, the STA transitions implicitly to the PS mode or a doze state of the PS mode, after a power save inactivity timeout period or after receiving an indication that data transmission is complete.
Abstract:
A basic bandwidth wireless local area network (WLAN) device or station (STA) is assigned to a secondary channel. The basic bandwidth STA may be a 20 MHz STA. On the secondary channel, the basic bandwidth STA operates in a wideband mode recovering received data transmitted from an access point (AP) as part of a high bandwidth physical layer protocol data unit (PPDU). The STA and the AP can be members of a basic service set (BSS). The high bandwidth PPDU may be, for example, a 40 MHz, 60 MHz, or 80 MHz PPDU. Once on the secondary channel, the STA relies on the AP to perform channel sensing and scheduling activities, thus reducing power consumption at the STA and increasing the efficiency of the BSS. Several signaling formats are provided for indicating the secondary channel that the STA is assigned to or requests to move to.
Abstract:
A station (STA) of a wireless local area network (WLAN) transitions implicitly between power management (PM) modes or PM states, without providing an explicit indication of the PM mode/state change to an access point (AP) of the WLAN. Transitions include changes between an active mode and a power save (PS) mode, or between an awake state and a doze state of the PS mode. Transitions occur immediately after receipt of a beacon indicating pending data for the STA, after an offset time indicated in the beacon, or at a specific wake time negotiated with the AP. After data reception is complete, the STA transitions implicitly to the PS mode or a doze state of the PS mode, after a power save inactivity timeout period or after receiving an indication that data transmission is complete.
Abstract:
An electronic device that transmits a frame to a second electronic device is described. In particular, during operation, an interface circuit in the electronic device (such as an access point in a WLAN) may transmit the frame to the second electronic device using a Wi-Fi communication protocol. The frame may include information cancelling a previously specified NAV protected time in a preamble of the frame. For example, the information may include a CF-End indication. Moreover, the information may be included in a MAC header of the frame and, more generally, in a preamble of a high efficiency (HE) physical layer convergence protocol (PLCP) protocol data unit (PPDU). Furthermore, the electronic device may transmit the frame in response to a block acknowledgment (BA) from the second electronic device.
Abstract:
Determining wireless local area network (WLAN) channel medium usage information by WLAN access points (APs) and WLAN stations (STAs) is disclosed. A new medium access control (MAC) duration field in a request to send (RTS) message provides a duration value to be conveyed in a subsequent clear to send (CTS) message. A channel or bandwidth can then be quickly used if an addressed STA does not respond to the RTS message. Also, a STA recognizes an unexpected silence and accesses the medium when a trigger frame is followed by a CTS timeout interval. In a third embodiment, an AP requests that STAs monitor particular channels to obtain network allocation vector (NAV) information. The STAs then respond (or informatively, do not respond) to RTS messages; thus, allowing the AP and other listening devices to determine channel medium information. The AP can then schedule data exchanges based on the determined information.
Abstract:
A wireless local area network station (STA) changes a receiver operating mode (ROM) and saves power by influencing when a ROM-conforming access point (AP) transmission takes place. The STA evaluates candidate delay regimes after a negotiation exchange with the STA. The STA then instructs the AP of a selected delay regime which the AP is permitted to use when transmitting data according to the changed ROM. The ROM can involve a change in the system bandwidth demodulated by the STA and/or the number of spatial streams demodulated by the STA. The delay regime can allow the AP to transmit with little or no delay based on the changed ROM, or the delay regime may require a fixed time delay before the AP transmits according to the changed ROM.
Abstract:
Disclosed herein are system, method, and computer program product embodiments for enabling a spatial reuse opportunity at a high efficiency (HE) station and a network allocation vector (NAV) reset capability at a legacy station using a Request to Send and/or Clear to Send (RTS and/or CTS) frame. For example, the method can include receiving a RTS frame with a redefined field that specifies spatial reuse information. The NAV can be set based on the RTS frame. The method can determine whether a second frame was received within a threshold time after a Short Interframe Space (SIFS). Finally, the method can reset the NAV based on whether the second frame was received within the threshold time.
Abstract:
Some embodiments of this disclosure include apparatuses and methods for implementing discovery frames and group addressed frames communication. For example, some embodiments relate to a method including generating a first frame to be transmitted to a first electronic device. An association identifier (AID) value of the first frame is set to a first value to indicate that the first frame is an individually addressed frame addressed to the first electronic device. The method further includes generating a second frame to be transmitted to a group of one or more electronic devices. An AID value of the second frame is set to a second value different from the first value. The method also includes transmitting the first frame and the second frame.