Abstract:
An enclosure and a method for forming an enclosure are disclosed. The enclosure may be formed from metal, such as aluminum, and further include a non-metal portion allowing for transmission and receipt of electromagnetic waves. The non-metal portion may be interlocked to the enclosure and in particular, to a region within the enclosure including a first material having a relatively high strength and stiffness compared to the non-metal portion. Interlocking means may include forming dovetail cuts into the enclosure to receive the non-metal portion, a hole or cavity drilled into the enclosure which includes internal threads, and a rod inserted into the first material to provide a tension to the non-metal portion. Methods of assembling internal components using anodization are also disclosed.
Abstract:
A distributed auxiliary hub for a portable electronic device is disclosed. The distributed auxiliary hub, located on a stacked circuit assembly, can distribute electrical signals to multiple different destinations. The distributed auxiliary hub is displaced and separate from a main logic board, and as a result, can provide supplemental functions. Although the distributed auxiliary hub is electrically coupled to the main logic board, the distributed auxiliary hub includes dedicated integrated circuits responsible for executing functions related to battery charging and powering of electronic components (e.g., haptic feedback module, speaker module, etc.). As a result, the distributed auxiliary hub, when executing these aforementioned functions, is not reliant upon the main logic board to transmit electrical current to the battery and/or electronic components. The distributed auxiliary hub, when electrically coupled to an external resource, is capable of directly transmitting electrical current to electronic components.
Abstract:
An interposer for mechanically and electrically connecting two circuit boards is described. The interposer can be bent to enclose an area of a circuit board. The interposer can include a first layer external to the enclosed area. The first layer can be conductive and can serve as an EMI shield. The interposer can also include a second layer internal to the enclosed area. The second layer can be non-conductive but can carry multiple discrete pins that can electrically couple the first and second circuit boards and provide signal transmission pathways between the circuit boards. The interposer can be formed by folding a sheet of conductive material having different cutout regions that forms a comb pattern into multiple stacked layers. Then, the bent regions that connect the stacked layers can be removed so that the conductive bars in the comb patterns can be separated and isolated to form discrete pins.
Abstract:
This application relates to methods and apparatus pertaining to a SIM tray that includes a deformable portion. When the SIM tray is subjected to stresses that result from tolerance stacking, the deformable portion accommodates the differences tolerance errors by allowing the non-deformable portion of the SIM tray to move substantially independently from one another. Creating the deformable portion can be accomplished by utilizing materials with lower relative moduli of elasticity, dovetails, magnets, or other means.
Abstract:
The subject matter of the disclosure relates to connectors for antenna feed assemblies and display coupling components of a mobile device. The flexible connectors can be configured with a flexible spring connector component that couples a mobile device antenna to a main logic board of the mobile device within a housing of the mobile device such that the flexible connector can withstand a drop event, while at the same providing for an in-line inductance as part of an antenna-defined design requirement. The display of the mobile device can be coupled to a housing of the mobile device using a pin-screw arrangement that allows the display to controllably shift in the X-direction and the Y-direction, while only being purposefully constrained in the Z-direction (with reference to a 3-dimensional graph having X, Y, and Z axes). This configuration can prevent the display from being pulled out of alignment during a drop event.
Abstract:
This application relates to methods and apparatus pertaining to a SIM tray that includes a deformable portion. When the SIM tray is subjected to stresses that result from tolerance stacking, the deformable portion accommodates the differences tolerance errors by allowing the non-deformable portion of the SIM tray to move substantially independently from one another. Creating the deformable portion can be accomplished by utilizing materials with lower relative moduli of elasticity, dovetails, magnets, or other means.
Abstract:
The subject matter of the disclosure relates to connectors for antenna feed assemblies and display coupling components of a mobile device. The flexible connectors can be configured with a flexible spring connector component that couples a mobile device antenna to a main logic board of the mobile device within a housing of the mobile device such that the flexible connector can withstand a drop event, while at the same providing for an in-line inductance as part of an antenna-defined design requirement. The display of the mobile device can be coupled to a housing of the mobile device using a pin-screw arrangement that allows the display to controllably shift in the X-direction and the Y-direction, while only being purposefully constrained in the Z-direction (with reference to a 3-dimensional graph having X, Y, and Z axes). This configuration can prevent the display from being pulled out of alignment during a drop event.
Abstract:
An enclosure and a method for forming an enclosure are disclosed. The enclosure may be formed from metal, such as aluminum, and further include a non-metal portion allowing for transmission and receipt of electromagnetic waves. The non-metal portion may be interlocked to the enclosure and in particular, to a region within the enclosure including a first material having a relatively high strength and stiffness compared to the non-metal portion. Interlocking means may include forming dovetail cuts into the enclosure to receive the non-metal portion, a hole or cavity drilled into the enclosure which includes internal threads, and a rod inserted into the first material to provide a tension to the non-metal portion. Methods of assembling internal components using anodization are also disclosed.
Abstract:
A mobile phone may include a housing, a battery at least partially within the housing, and a circuit board assembly at least partially within the housing and positioned along a side of the battery. The circuit board assembly may include a first circuit board defining a first hole, a second circuit board defining a second hole, a wall structure between the first circuit board and the second circuit board and attached to an inner surface of the first circuit board and an inner surface of the second circuit board, and a fastener assembly configured to retain the first circuit board to the second circuit board.
Abstract:
A mobile phone may include a housing, a battery at least partially within the housing, and a circuit board assembly at least partially within the housing and positioned along a side of the battery. The circuit board assembly may include a first circuit board defining a first hole, a second circuit board defining a second hole, a wall structure between the first circuit board and the second circuit board and attached to an inner surface of the first circuit board and an inner surface of the second circuit board, and a fastener assembly configured to retain the first circuit board to the second circuit board.