Abstract:
A wireless communication device may wirelessly control an object, such as a physical device, directly or through interaction with a virtual representation (or placeholder) of the object situated at a predefined physical location. In particular, the wireless communication device may identify an intent gesture performed by a user that indicates intent to control the object. For example, the intent gesture may involve pointing or orienting the wireless communication device toward the object, with or without additional input. Then, the wireless communication device may determine the object associated with the intent gesture using wireless ranging and/or device orientation. Moreover, the wireless communication device may interpret sensor data from one or more sensors associated with the wireless communication device to determine an action gesture corresponding to a command or a command value. The wireless communication device may then transmit the command value to control the object.
Abstract:
An electronic device may be provided with control circuitry for locating lost items. The control circuitry may determine where an item is located and may use the display or other output device to guide a user to the item. The display may display a visual guide such as an arrow, a sphere, a circle, a compass, or other visual aid that points the user in the direction of the item. The control circuitry may change the size or other characteristic of the visual aid on the display as the distance between the electronic device and the object changes. The control circuitry may change the location of the visual aid on the display as the orientation of the electronic device relative to the object changes. The display may overlay the visual aid onto live images of the user's surroundings as they are captured by a camera.
Abstract:
A fabric-based item may adapt to and adjust the biometric state of an individual that is wearing or touching the fabric-based item. The fabric-based item may be a cover for a seat in a vehicle, an article of clothing, a wrist band, or other suitable fabric-based item. The fabric-based item may include one or more sensors that gather biometric information about the individual and one or more environmental control devices that adjust or maintain the environment around the individual based on the biometric information. The sensors may include temperature sensors, humidity sensors, pressure sensors, heart rate sensors, or other sensors that gather biometric information about the user. The environmental control elements may be used to control the temperature, humidity, airflow or other aspect of the environment around the individual based on the biometric state of the individual.
Abstract:
The present embodiments provide a system that estimates a battery life for a portable electronic device. During operation, the system obtains a usage log containing traces of user-related system activity for the portable electronic device. Next, the system runs the usage log against a power model for the portable electronic device to determine the power consumption for the portable electronic device. Finally, the system uses the determined power consumption to estimate a battery life for the portable electronic device. In some embodiments, estimating the battery life involves determining a battery size to achieve a desired battery life for the portable electronic device.
Abstract:
A system provides a personalized and secure user experience to access a secured asset, such as a vehicle. A first communication is transmitted, and a second communication is received in response to the first communication. An approach vector is determined based on the first communication and the second communication. The approach vector is compared with a known approach vector, a request for authentication is transmitted based on the comparison. A response to the request for authentication is received, and access to an asset is granted based on the approach vector and the response to the request for authentication.
Abstract:
An electronic device may include touch input components and associated haptic output components. The control circuitry may provide haptic output in response to touch input on the touch input components and may send wireless signals to the external electronic device based on the touch input. The haptic output components may provide local and global haptic output. Local haptic output may be used to guide a user to the location of the electronic device or to provide a button click sensation to the user in response to touch input. Global haptic output may be used to notify the user that the electronic device is aligned towards the external electronic device and is ready to receive user input to control or communicate with the external electronic device. Control circuitry may switch a haptic output component into an inactive mode to inform the user that a touch input component is inactive.
Abstract:
An electronic device may be provided with control circuitry, wireless transceiver circuitry, and a display. The electronic device may be used to provide information to a user in response to being pointed at a particular object. The control circuitry may determine when the electronic device is pointed at a particular object using wireless control circuitry and/or motion sensor circuitry. In response to determining that the electronic device is pointed at a particular object, the control circuitry may take suitable action. This may include, for example, displaying information about an object when the electronic device is pointed at the object, displaying control icons for electronic equipment when the electronic device is pointed at the electronic equipment, and/or displaying a virtual object when the electronic device is pointed at real world object.
Abstract:
Devices, methods and graphical user interfaces for manipulating user interfaces based on fingerprint sensor inputs are provided. While a display of an electronic device with a fingerprint sensor displays a first user interface, the device may detect movement of a fingerprint on the fingerprint sensor. In accordance with a determination that the movement of the fingerprint is in a first direction, the device allows navigating through the first user interface, and in accordance with a determination that the movement of the fingerprint is in a second direction different from the first direction, the device allows displaying a second user interface different from the first user interface on the display.
Abstract:
An electronic device such as a head-mounted display or other display system may have a transparent display. The transparent display may be formed from a transparent display panel or a display device that provides images to a transparent optical coupler. A user may view real-world objects through the transparent display. Control circuitry can direct the transparent display to display computer-generated content over selected portions of the real-world objects. The head-mounted display may have adjustable components through which the user may view the real-world objects. The adjustable components may include an adjustable light modulator, an adjustable color filter, and an adjustable polarizer. The control circuitry may adjust these components based on information from a front-facing camera that captures images of the real-world objects, based on information from a gaze tracking camera, and based on other input.
Abstract:
An electronic device may have back-to-back displays. A user-facing display may have microlenses, tunable lens structures, holograms, lasers, and other structures for displaying images in multiple eye boxes while the electronic device is being worn on the head of a user. In some configurations, a switchable diffuser may be incorporated into the user-facing display. In one mode, the switchable diffuser allows microlenses of the pixels of the user-facing display to provide images to eye boxes in which images from the display are viewable. In another mode, the switchable diffuser diffuses light from the pixels so that the user-facing display may be used while the device is being held in the hand of the user.