Abstract:
The present invention relates to a process for preparing cyclohexane by isomerizing a hydrocarbon mixture (HM1) comprising methylcyclopentane (MCP) in the presence of a catalyst. The catalyst is preferably an acidic ionic liquid. The starting material used is a stream (S1) which originates from a steamcracking process. The hydrocarbon mixture (HM1) obtained from this stream (S1) in an apparatus for aromatics removal has a reduced aromatics content compared to stream (S1), and (HM1) may optionally also be (virtually) free of aromatics. Depending on the type and amount of the aromatics remaining in the hydrocarbon mixture (HM1), especially in the case that benzene is present, the isomerization may additionally be preceded by performance of a hydrogenation of (HM1). In addition, depending on the presence of other components of (HM1), further purification steps may optionally be performed prior to or after the isomerization or hydrogenation. High-purity (on-spec) cyclohexane is preferably isolated from the hydrocarbon mixture (HM2) obtained in the isomerization, the specifications being, for example, those applicable to the use of the cyclohexane for the preparation, known to those skilled in the art, of caprolactam.
Abstract:
The present invention relates to a chemical reaction process, preferably an isomerization process, of at least one hydrocarbon in the presence of an ionic liquid and a hydrogen halide (HX). The chemical reaction is carried out in an apparatus (V1) in which a gas phase is in direct contact with a liquid reaction mixture. The gas phase and the liquid reaction mixture each comprise the hydrogen halide and the liquid reaction mixture additionally comprises at least one hydrocarbon and the ionic liquid. Gaseous HX is introduced into the apparatus (V1) in such a way that the hydrogen halide partial pressure is kept constant in the gas phase. The ionic liquid used in the respective chemical reaction, in particular in an isomerization, can (inter alia) be regenerated by the process of the invention.
Abstract:
The present invention relates to a process for preparing cyclohexane by isomerizing a hydrocarbon mixture (HM1) comprising methylcyclopentane (MCP) in the presence of a catalyst. The catalyst is preferably an acidic ionic liquid. The starting material used is a stream (S1) which originates from a steamcracking process. The hydrocarbon mixture (HM1) obtained from this stream (S1) in an apparatus for aromatics removal has a reduced aromatics content compared to stream (S1), and (HM1) may optionally also be (virtually) free of aromatics. Depending on the type and amount of the aromatics remaining in the hydrocarbon mixture (HM1), especially in the case that benzene is present, the isomerization may additionally be preceded by performance of a hydrogenation of (HM1). In addition, depending on the presence of other components of (HM1), further purification steps may optionally be performed prior to or after the isomerization or hydrogenation. High-purity (on-spec) cyclohexane is preferably isolated from the hydrocarbon mixture (HM2) obtained in the isomerization, the specifications being, for example, those applicable to the use of the cyclohexane for the preparation, known to those skilled in the art, of caprolactam.
Abstract:
The present invention relates to a process for separating a phase (A) from a phase (B), phase (A) having a higher viscosity than phase (B), by inverting the direction of dispersion from phase (B) in phase (A) to phase (A) in phase (B) by recycling a stream comprising phase (B) in excess.
Abstract:
The present invention relates to a process for separating a phase (A) from a phase (B), phase (A) having a higher viscosity than phase (B), by inverting the direction of dispersion from phase (B) in phase (A) to phase (A) in phase (B) by recycling a stream comprising phase (B) in excess.
Abstract:
The present invention relates to a process for separating a phase (A) comprising at least one ionic liquid from a phase (B), phase (A) having a higher viscosity than phase (B), comprising the following steps: a) providing a stream (S1) comprising a dispersion (D1) in which phase (A) is dispersed in phase (B), b) introducing stream (S1) into a coalescing filter (K) manufactured from acrylic/phenolic resin, c) separating the dispersed phase (A) from phase (B) in the coalescing filter (K), d) discharging a stream (S2) comprising at least 70% by weight, preferably at least 90% by weight, of phase (A) from the coalescing filter (K), and e) discharging a stream (S3) comprising at least 70% by weight, preferably at least 90% by weight, of phase (B) from the coalescing filter (K).
Abstract:
The present invention relates to a process for hydrocarbon conversion in the presence of an acidic ionic liquid. The hydrocarbon conversion is preferably an isomerization, especially an isomerization of methylcyclopentane (MOP) to cyclohexane. Prior to the hydrocarbon conversion, a hydrogenation is performed, preference being given to hydrogenating benzene to cyclohexane. The cyclohexane obtained in the hydrogenation and/or isomerization is preferably isolated from the process. In a preferred embodiment of the present invention, the hydrogenation is followed and the hydrocarbon conversion, especially the isomerization, is preceded by distillative removal of low boilers, especially C5-C6-alkanes such as cyclopentane or isohexanes, from the hydrocarbon mixture used for hydrocarbon conversion.
Abstract:
The present invention relates to a process for treating an output from a hydrocarbon conversion, wherein the hydrocarbon conversion is performed in the presence of an acidic ionic liquid. The hydrocarbon conversion is preferably an isomerization. First of all, the hydrogen halide is drawn off in an apparatus from a mixture which originates from the hydrocarbon conversion and comprises at least one hydrocarbon and at least one hydrogen halide, and then the mixture depleted of hydrogen halide is subjected to a wash.
Abstract:
The present invention relates to a process for separating a phase (A) comprising at least one ionic liquid from a phase (B), phase (A) having a higher viscosity than phase (B), comprising the following steps: a) providing a stream (S1) comprising a dispersion (D1) in which phase (A) is dispersed in phase (B), b) introducing stream (S1) into a coalescing filter (K) manufactured from acrylic/phenolic resin, c) separating the dispersed phase (A) from phase (B) in the coalescing filter (K), d) discharging a stream (S2) comprising at least 70% by weight, preferably at least 90% by weight, of phase (A) from the coalescing filter (K), and e) discharging a stream (S3) comprising at least 70% by weight, preferably at least 90% by weight, of phase (B) from the coalescing filter (K).
Abstract:
The present invention relates to a process for treating an output from a hydrocarbon conversion, wherein the hydrocarbon conversion is performed in the presence of an acidic ionic liquid. The hydrocarbon conversion is preferably an isomerization. A mixture which originates from the hydrocarbon conversion and comprises at least one hydrocarbon and at least one hydrogen halide is washed with an aqueous medium having a pH between 5 and 9, which removes hydrogen halide from the mixture.