Abstract:
Solid composite electrolytes include (i) an amorphous matrix comprising one or more lithiophilic elements and (ii) lithium-based electrolyte crystals at least partially embedded in the amorphous matrix, the lithium-based electrolyte crystals having a different chemical composition than the amorphous matrix. After the composite is compressed or cycled in a battery, a surface portion of the composite has a concentration of the lithiophilic element(s) that is greater than an average concentration of the lithiophilic element(s) in a bulk portion of the composite.
Abstract:
A method that includes contacting a Li-containing aqueous liquid with a Li ion-selective membrane while simultaneously applying an electric field thereby extracting Li ions from the Li-containing aqueous liquid; and intercalating the extracted Li ions into a cathode material.
Abstract:
Described herein are systems and methods of storing and delivering electrical using hydrogen at low-cost and for long-durations. The systems and methods use energy-bearing redox pairs that electrochemically bear energy through decoupled hydrogen and oxygen consumption and/or evolution reactions, which are typically associated with fuel cells. Each species of the energy-bearing redox pair is associated with a standard electrode potential within a water electrolysis voltage window for the electrolyte solution. Electrical energy delivery, hydrogen generation, electrolyte regeneration, or combinations thereof can be performed by logically or physically separated unit operations in a continuous manner, batch manner, or semi-batch manner facilitated by the energy-bearing redox pair.
Abstract:
Electrodes having nanostructure and/or utilizing nanoparticles of active materials and having high mass loadings of the active materials can be made to be physically robust and free of cracks and pinholes. The electrodes include nanoparticles having electroactive material, which nanoparticles are aggregated with carbon into larger secondary particles. The secondary particles can be bound with a binder to form the electrode. The electrodes can further comprise additives that enhance electrode wetting thereby improving overall electrode performance.
Abstract:
Disclosed herein are embodiments of a lithium-ion battery system comprising an anode, an anode current collector, and a layer of lithium metal in contact with the current collector, but not in contact with the anode. The lithium compensation layer dissolves into the electrolyte to compensate for the loss of lithium ions during usage of the full cell. The specific placement of the lithium compensation layer, such that there is no direct physical contact between the lithium compensation layer and the anode, provides certain advantages.
Abstract:
Disclosed are preformed solid electrolyte interface (SEI) film graphite electrodes in lithium-sulfur based chemistry energy storage systems and methods of making the preformed SEI films on graphite electrodes to expand the use of graphite-based electrodes in previously non-graphite anode energy systems, such as lithium-sulfur battery systems. Also disclosed are lithium-ion sulfur battery systems comprising electrolytes that do not include an alkyl carbonate, such as those that do not include EC, and graphite anodes having preformed alkyl carbonate, such as EC-based SEI films.
Abstract:
Electrodes having nanostructure and/or utilizing nanoparticles of active materials and having high mass loadings of the active materials can be made to be physically robust and free of cracks and pinholes. The electrodes include nanoparticles having electroactive material, which nanoparticles are aggregated with carbon into larger secondary particles. The secondary particles can be bound with a binder to form the electrode.