Abstract:
Various embodiments include interconnects and/or end plates having features for reducing stress in a fuel cell stack. In embodiments, an interconnect/end plate may have a window seal area that is recessed relative to the flow field to indirectly reduce stress induced by an interface seal. Other features may include a thicker protective coating and/or larger uncoated area of an end plate, providing a recessed portion on an end plate for an interface seal, and/or recessing the fuel hole region of an interconnect relative to the flow field to reduce stress on the fuel cell. Further embodiments include providing intermittent seal support to minimize asymmetric seal loading and/or a non-circular seal configuration to reduce stress around the fuel hole of a fuel cell.
Abstract:
Systems and methods for sintering and conditioning fuel cell stacks utilizing channel guides, baffles, and internal compression systems are provided. Sintering and conditioning may be performed utilizing a fuel cell column cartridge assembly and fuel cell stacks may be sintered and conditioned at the system level during the same annealing cycle on the same support.
Abstract:
A fuel cell assembly includes a fuel cell stack including a plurality of fuel cells, an incoming oxidizing gas flow path configured to deliver an oxidizing gas to the plurality of fuel cells, and a chromium-getter material located in the incoming oxidizing flow path. A fuel cell includes an electrolyte, a cathode electrode on a first side of the electrolyte, an anode electrode on a second side of the electrolyte, and a chromium-getter material on the cathode electrode.
Abstract:
A method of operating a solid oxide fuel cell (SOFC) system which contains a plurality of SOFCs having cermet anode electrodes includes operating the SOFC system above 760° C. to generate electricity and intentionally oxidizing the cermet anode electrodes at a temperature of at least 760° C. when the SOFC system stops operating to generate electricity.
Abstract:
Systems and methods for sintering and conditioning fuel cell stacks utilizing channel guides, baffles, and internal compression systems are provided. Sintering and conditioning may be performed utilizing a fuel cell column cartridge assembly and fuel cell stacks may be sintered and conditioned at the system level during the same annealing cycle on the same support.
Abstract:
Systems and methods for fuel cell stack part serialization and tracking. In an embodiment, a barcode may be applied to a fuel cell stack part which may identify the fuel cell stack part. In an embodiment, the barcode may be applied as ink on a green fuel cell stack part prior to sintering. In an embodiment, a portion of a fuel cell stack part may be imaged and pattern recognition techniques may be utilized to identify the fuel cell stack part based on the unique features of fuel cell stack part. In an embodiment, portion of a fuel cell stack part may be measured to generate one or more series of unique volume/area values and one or more series of unique volume/area values may be utilized to identify the fuel cell stack part.
Abstract:
Various embodiments provide methods and systems for detecting cracks in ceramic electrolytes using electrical conductors. A method for testing an electrolyte material, such as a ceramic electrolyte material for use in a solid oxide fuel cell device, includes providing a conductive path on the electrolyte material, electrically connecting a probe across the conductive path, and measuring a value associated with the conductive path to determine the presence or absence of a crack in the material.
Abstract:
Various embodiments provide methods and systems for detecting cracks in ceramic electrolytes using electrical conductors. A method for testing an electrolyte material, such as a ceramic electrolyte material for use in a solid oxide fuel cell device, includes providing a conductive path on the electrolyte material, electrically connecting a probe across the conductive path, and measuring a value associated with the conductive path to determine the presence or absence of a crack in the material.
Abstract:
A system and method in which a high temperature fuel cell stack exhaust stream is recycled back into the fuel inlet stream of the high temperature fuel cell stack. The recycled stream may be sent to a carbon dioxide separation device which separates carbon dioxide from the fuel exhaust stream. The carbon dioxide separation device may be a carbon dioxide trap, an electrochemical carbon dioxide separator, or a membrane separator. A water separator may be used in conjunction with the carbon dioxide separation device or used separately to continuously remove water from the recycled stream.
Abstract:
A method of operating a high temperature fuel cell system containing a plurality of fuel cell stacks includes operating one or more of the plurality of fuel cell stacks at a first output power while operating another one or more of the plurality of the fuel cell stacks at a second output power different from the first output power.