Abstract:
Metal nanowires with uniform noble metal coatings are described. Two methods, galvanic exchange and direct deposition, are disclosed for the successful formation of the uniform noble metal coatings. Both the galvanic exchange reaction and the direct deposition method benefit from the inclusion of appropriately strong binding ligands to control or mediate the coating process to provide for the formation of a uniform coating. The noble metal coated nanowires are effective for the production of stable transparent conductive films, which may comprise a fused metal nanostructured network.
Abstract:
Metal nanowires with uniform noble metal coatings are described. Two methods, galvanic exchange and direct deposition, are disclosed for the successful formation of the uniform noble metal coatings. Both the galvanic exchange reaction and the direct deposition method benefit from the inclusion of appropriately strong binding ligands to control or mediate the coating process to provide for the formation of a uniform coating. The noble metal coated nanowires are effective for the production of stable transparent conductive films, which may comprise a fused metal nanostructured network.
Abstract:
Nanoscale colorants are introduced to adjust the hue of transparent conductive films, such as to provide a whiter film. The transparent conductive films can have sparse metal conductive layers, which can be formed using silver nanowires. Color of the film can be evaluated using standard color parameters. In particular, values of color parameter b* can be reduced with the nanoscale colorants without unacceptably changing other parameters, such as haze, a* and transparency.
Abstract:
Highly uniform and thin silver nanowires are described having average diameters below 20 nm and a small standard deviation of the diameters. The silver nanowires have a high aspect ratio. The silver nanowires can be characterized by a small number of nanowires having a diameter greater than 18 nm as well as with a blue shifted narrow absorption spectrum in a dilute solution. Methods are described to allow for the synthesis of the narrow uniform silver nanowires. Transparent conductive films formed from the thin, uniform silver nanowires can have very low levels of haze and low values of ΔL*, the diffusive luminosity, such that the transparent conductive films can provide little alteration of the appearance of a black background.
Abstract:
Highly uniform and thin silver nanowires are described having average diameters below 20 nm and a small standard deviation of the diameters. The silver nanowires have a high aspect ratio. The silver nanowires can be characterized by a small number of nanowires having a diameter greater than 18 nm as well as with a blue shifted narrow absorption spectrum in a dilute solution. Methods are described to allow for the synthesis of the narrow uniform silver nanowires. Transparent conductive films formed from the thin, uniform silver nanowires can have very low levels of haze and low values of ΔL*, the diffusive luminosity, such that the transparent conductive films can provide little alteration of the appearance of a black background.
Abstract:
Metal nanowires with uniform noble metal coatings are described. Two methods, galvanic exchange and direct deposition, are disclosed for the successful formation of the uniform noble metal coatings. Both the galvanic exchange reaction and the direct deposition method benefit from the inclusion of appropriately strong binding ligands to control or mediate the coating process to provide for the formation of a uniform coating. The noble metal coated nanowires are effective for the production of stable transparent conductive films, which may comprise a fused metal nanostructured network.
Abstract:
Desirable methods for larger scale silver nanoplate synthesis are described along with methods for applying a noble metal coating onto the silver nanoplates to form coated silver nanoplates with a desirable absorption spectrum. The silver nanoplates are suitable for use in coatings for altering the hue of a transparent film. The hue adjustment can be particularly desirable for transparent conductive films.
Abstract:
Highly uniform and thin silver nanowires are described having average diameters below 20 nm and a small standard deviation of the diameters. The silver nanowires have a high aspect ratio. The silver nanowires can be characterized by a small number of nanowires having a diameter greater than 18 nm as well as with a blue shifted narrow absorption spectrum in a dilute solution. Methods are described to allow for the synthesis of the narrow uniform silver nanowires. Transparent conductive films formed from the thin, uniform silver nanowires can have very low levels of haze and low values of ΔL*, the diffusive luminosity, such that the transparent conductive films can provide little alteration of the appearance of a black background.
Abstract:
Desirable methods for larger scale silver nanoplate synthesis are described along with methods for applying a noble metal coating onto the silver nanoplates to form coated silver nanoplates with a desirable absorption spectrum. The silver nanoplates are suitable for use in coatings for altering the hue of a transparent film. The hue adjustment can be particularly desirable for transparent conductive films.
Abstract:
Metal nanowires with uniform noble metal coatings are described. Two methods, galvanic exchange and direct deposition, are disclosed for the successful formation of the uniform noble metal coatings. Both the galvanic exchange reaction and the direct deposition method benefit from the inclusion of appropriately strong binding ligands to control or mediate the coating process to provide for the formation of a uniform coating. The noble metal coated nanowires are effective for the production of stable transparent conductive films, which may comprise a fused metal nanostructured network.