Abstract:
A marketplace for monitoring services providers may configure and deploy monitoring and other services that meet a solution definition for a given application. The services may include monitoring and tracing, analysis, rendering, debugging, optimizing, load generating, and other solution providers. The solution definition may include a schema or other data definitions for parameters gathered during application execution, as well as definitions for parameters or solutions that may be desired. The marketplace may identify those services that may be configured to meet the solution definition, then configure and deploy the selected services. A financial clearinghouse may handle financial payments to the various service providers.
Abstract:
An analysis system may perform network analysis on data gathered from an executing application. The analysis system may identify relationships between code elements and use tracer data to quantify and classify various code elements. In some cases, the analysis system may operate with only data gathered while tracing an application, while other cases may combine static analysis data with tracing data. The network analysis may identify groups of related code elements through cluster analysis, as well as identify bottlenecks from one to many and many to one relationships. The analysis system may generate visualizations showing the interconnections or relationships within the executing code, along with highlighted elements that may be limiting performance.
Abstract:
An analysis system may perform network analysis on data gathered from an executing application. The analysis system may identify relationships between code elements and use tracer data to quantify and classify various code elements. In some cases, the analysis system may operate with only data gathered while tracing an application, while other cases may combine static analysis data with tracing data. The network analysis may identify groups of related code elements through cluster analysis, as well as identify bottlenecks from one to many and many to one relationships. The analysis system may generate visualizations showing the interconnections or relationships within the executing code, along with highlighted elements that may be limiting performance.
Abstract:
A load balanced system may incorporate instrumented systems within a group of managed devices and distribute workload among the devices to meet both load balancing and data collection. A workload distributor may communicate with and configure several managed devices, some of which may have instrumentation that may collect trace data for workload run on those devices. Authentication may be performed between the managed devices and the workload distributor to verify that the managed devices are able to receive the workloads and to verify the workloads prior to execution. The workload distributor may increase or decrease the amount of instrumentation in relation to the workload experienced at any given time.
Abstract:
A load balanced system may incorporate instrumented systems within a group of managed devices and distribute workload among the devices to meet both load balancing and data collection. A workload distributor may communicate with and configure several managed devices, some of which may have instrumentation that may collect trace data for workload run on those devices. Authentication may be performed between the managed devices and the workload distributor to verify that the managed devices are able to receive the workloads and to verify the workloads prior to execution. The workload distributor may increase or decrease the amount of instrumentation in relation to the workload experienced at any given time.
Abstract:
A timeline chart may represent multiple data sets gathered from multiple sequences of a process by placing sub-graphs within timeline bars. The sub-graphs may represent summarized data related to each event represented by a timeline bar. The timeline chart may present an overall view of a sequence of process steps with insights to the shape or distribution of the underlying observations. The timeline chart may be an instance of an event chain diagram, where the elements within the event chains are displayed with respect to time. The timeline chart may be presented as representing the aggregated dataset of multiple runs, as well as a representation of a single observed sequence. In both cases, sub-graphs may be included in a timeline bar to represent different views of the aggregated dataset.
Abstract:
Tracer objectives in a distributed tracing system may be compared to identify input parameters that may have a high statistical relevancy. An iterative process may traverse multiple input objects by comparing results of multiple tracer objectives and scoring possible input objects as being possibly statistically relevant. With each iteration, statistically irrelevant input objects may be discarded from a tracer objective and other potentially relevant objects may be added. The iterative process may converge on a set of statistically relevant input objects for a given measured value without a priori knowledge of an application being traced.
Abstract:
An application development environment may have a user interface to a marketplace for development related services, such as monitoring, debugging, load generating, analysis, and other services. Service providers may make their products available through the marketplace, and in some cases, the providers may bid for placement in the user interface. The services may be paid or free, and a clearinghouse may handle financial transactions that may occur. The application development environment may include an editor, debugger, compiler, and other tools by which a developer may write, edit, test, and debug an application. The marketplace may detect characteristics about the application under development, and make those characteristics available to various service providers.
Abstract:
A force directed graph may display time series data using a set of playback controls to pause, play, reverse, fast forward, slow down, or otherwise control the display of the time series data. The playback controls may be used in a real time or near real time application to which data sets are displayed and the speed with which the data sets may be displayed. In one architecture, the force directed graph may be deployed using a rendering engine that receives data and renders the data into a graph. A playback controller may send updates to the rendering engine according to user inputs from the playback controls.
Abstract:
A force directed graph may serve as a part of a user control for a tracer. The tracer may collect data while monitoring an executing application, then the data may be processed and displayed on a force directed graph. A user may be able to select individual nodes, edges, or other elements, then cause the tracer to change what data may be collected. The user may be able to select individual nodes, edges, or groups of elements on the graph, then perform updates to the tracer using the selected elements. The selection mechanisms may include clicking and dragging a window to select nodes that may be related, as well as selecting from a legend or other grouping.