Abstract:
A method includes forming a glass article. The glass article includes a core and a clad adjacent to the core. The core includes a first glass composition. The clad includes a second glass composition different than the first glass composition. A degradation rate of the second glass composition in a reagent is greater than a degradation rate of the first glass composition in the reagent.
Abstract:
An optical boroaluminate glass article comprises: from greater than or equal to 10.0 mol % to less than or equal to 30.0 mol % Al2O3; from greater than or equal to 10.0 mol % to less than or equal to 55.0 mol % CaO; from greater than or equal to 10.0 mol % to less than or equal to 25.0 mol % B2O3; from greater than or equal to 0.0 mol % to less than or equal to 30.0 mol % SiO2; and from greater than or equal to 1.0 mol % to less than or equal to 20.0 mol % refractive index raising components. The optical boroaluminate glass article has a refractive index of the glass article, measured at 589.3 nm, of greater than or equal to 1.62, and a density of less than or equal to 4.00 g/cm3.
Abstract:
Computer-implemented methods and apparatus are provided for predicting/estimating (i) a non-equilibrium viscosity for at least one given time point in a given temperature profile for a given glass composition, (ii) at least one temperature profile that will provide a given non-equilibrium viscosity for a given glass composition, or (iii) at least one glass composition that will provide a given non-equilibrium viscosity for a given time point in a given temperature profile. The methods and apparatus can be used to predict/estimate stress relaxation in a glass article during forming as well as compaction, stress relaxation, and/or thermal sag or thermal creep of a glass article when the article is subjected to one or more post-forming thermal treatments.
Abstract:
Intermediate to high CTE glass compositions and laminates formed from the same are described. The glasses described herein have properties, such as liquidus viscosity or liquidus temperature, which make them particularly well suited for use in fusion forming processes, such as the fusion down draw process and/or the fusion lamination process. Further, the glass composition may be used in a laminated glass article, such as a laminated glass article formed by a fusion laminate process, to provide strengthened laminates via clad compression as a result of CTE mismatch between the core glass and clad glass.
Abstract:
Alkali aluminosilicate glasses that are ion exchangeable to high compressive stresses, have fast ion exchange kinetics, and high intrinsic damage resistance. The glasses achieve all of the above desired properties either with only small amounts of P2O5 (
Abstract:
An aluminoborate glass composition, including B2O3, Al2O3, P2O5, Na2O, and CaO, as defined herein. Also disclosed are bioactive compositions including the disclosed aluminoborate glass composition, a suitable fluid, and at least one live cell. Also disclosed is method of limiting the amount of boron released into an aqueous solution from a disclosed aluminoborate-containing glass composition as defined herein. Also disclosed is a method of proliferating cells on a bioactive substrate as defined herein.
Abstract:
An ion exchangeable glass having a high degree of resistance to damage caused by abrasion, scratching, indentation, and the like. The glass comprises alumina, B2O3, and alkali metal oxides, and contains boron cations having three-fold coordination. The glass, when ion exchanged, has a Vickers crack initiation threshold of at least 10 kilogram force (kgf).
Abstract:
A method includes forming a glass article. The glass article includes a core and a clad adjacent to the core. The core includes a first glass composition. The clad includes a second glass composition different than the first glass composition. A degradation rate of the second glass composition in a reagent is greater than a degradation rate of the first glass composition in the reagent.
Abstract:
A glass laminate for an architectural element has a glass substrate coupled to the architectural element and defines a primary surface facing away from the architectural element. A phase-separable glass cladding is coupled to the primary surface. The cladding has an interconnected matrix with a first phase composition and a second phase that has a second phase composition different than the first phase composition. The second phase is distributed throughout the interconnected matrix. A copper phase is distributed within the interconnected matrix. The glass cladding has an antimicrobial log kill rate greater than about 4 as measured by an EPA Copper Test Protocol.
Abstract:
Alkali-free phosphoboroaluminosilicate glasses are provided. The glasses include the network formers SiO2, B2O3, and at least one of Al2O3 and P2O5. The glass may, in some embodiments, have a Young's modulus of less than about 78 GPa and/or a coefficient of thermal expansion, averaged over a temperature range from about 20° C. to about 300° C., of less than about 38×10−7/° C. The glass may be used as a cover glass for electronic devices or as an outer clad layer for a glass laminate.
Abstract translation:提供了无碱磷钼硼硅玻璃。 玻璃包括网络形成体SiO 2,B 2 O 3以及Al 2 O 3和P 2 O 5中的至少一种。 在一些实施方案中,玻璃在约20℃至约300℃的温度范围内具有小于约78GPa的杨氏模量和/或热膨胀系数小于约38 ×10-7 /℃。该玻璃可以用作电子器件的玻璃罩或玻璃层压板的外包层。