Abstract:
An integrated optical modulator includes, in part, a pair of waveguides and an inductor. The first waveguide is adapted to receive an incoming optical signal. The second waveguide includes a portion placed in proximity of the first waveguide so as to enable the incoming optical signal travelling in the first waveguide to couple to the second waveguide. The second waveguide comprises a p-n junction. The inductor has a first terminal coupled to the p-n junction and a second terminal coupled to a contact pad. The second waveguide has a circular shape. The inductor optionally has a spiral shape.
Abstract:
An integrated optical linewidth reduction system includes a phase modulator adapted to modulate the phase of an incoming optical signal in response to a feedback control signal defined by a first electrical signal. The phase modulator is further adapted to generate a first optical signal travelling through a first optical path. The first electrical signal is representative of a phase noise of the first optical signal. An optical linewidth of the first optical signal is less than an optical linewidth of the incoming optical signal.
Abstract:
An integrated optical linewidth reduction system detects/estimates the phase noise of an incoming optical signal and subtracts the detected phase noise from the phase noise of the incoming signal. A first coupler/splitter of the linewidth reduction system may split the incoming signal into first and second optical signals travelling through first and second optical paths. A second coupler/splitter may split the second optical signal into third and fourth optical signals travelling through third and fourth optical paths. The third optical path has a longer propagation delay than the fourth optical path. Two different coupling ratios of the third and fourth optical signals are used to generate an electrical signal representative of the phase noise of the incoming signal. A phase detector/estimator estimates the phase noise from the electrical signal. A phase modulator subtracts the detected/estimated phase noise from the phase noise of the incoming signal.
Abstract:
A phased-array includes, in part, N transceivers each including a receiver and a transmitter, and a controller. The phased array is configured to transmit a first radio signal from a first element of the array during a first time period, receive the first radio signal from a second element of the array, recover a first value associated with the radio signal received by the second element, transmit a second radio signal from the second element of the array during a second time period, receive the second radio signal from the first element of the array, recover a second value associated with the radio signal received by the first element, and determine a first phase of a reference signal received by the second element from the recovered first and second values. The first phase is relative to a second phase of the reference signal received by the first element.
Abstract:
A wireless laser power transfer system includes, in part, a transmitter and a receiver that form a wireless link. The transmitter, includes, in part, a first communication system, at least a first source of laser beam, and a controller adapted to vary power and direction of the laser beam and further to modulate the laser beam. The receiver includes, in part, a communication system adapted to establish a wireless link with the first communication system, at least a first photo-voltaic cell, and a controller adapted to demodulate and detect the power of the modulated laser beam received by the first photo-voltaic cell from the first source of laser beam. The system optionally includes at least a second source of laser beam controlled by the transmitter controller. The system optionally further includes a second photo-voltaic cell. The transmitter controller is further adapted to cause the second laser beam to strike the second photo-voltaic cell.
Abstract:
A co-prime transceiver attains higher fill factor, improved side-lobe rejection, and higher lateral resolution per given number of pixels. The co-prime transceiver includes in part, a transmitter array having a multitude of transmitting elements and a receiver array having a multitude of receiving elements. The distance between each pair of adjacent transmitting elements is a first integer multiple of the whole or fraction of the wavelength of the optical. The distance between each pair of adjacent receiving elements is a second integer multiple of the whole or fraction of the wavelength of the optical signal. The first and second integers are co-prime numbers with respect to one another. The transceiver is fully realizable in a standard planar photonics platform in which the spacing between the elements provides sufficient room for optical routing to inner elements.
Abstract:
A phased-array includes, in part, N transceivers each including a receiver and a transmitter, and a controller. The phased array is configured to transmit a first radio signal from a first element of the array during a first time period, receive the first radio signal from a second element of the array, recover a first value associated with the radio signal received by the second element, transmit a second radio signal from the second element of the array during a second time period, receive the second radio signal from the first element of the array, recover a second value associated with the radio signal received by the first element, and determine a first phase of a reference signal received by the second element from the recovered first and second values. The first phase is relative to a second phase of the reference signal received by the first element.
Abstract:
A radiator is formed by forming a multitude of slot antennas adjacent one another such that the spacing between each pair of adjacent slot antennas is smaller than the wavelength of the signal being transmitted or received by the radiator. The radiator achieves high efficiency by reducing the excitation of substrate modes, and further achieves high output power radiation by combining power of multiple CMOS power amplifiers integrated in the radiator structure. Impedance matching to low-voltage CMOS power amplifiers is achieved through lowering the impedance at the radiator ports. Each output power stage may be implemented as a combination of several smaller output power stages operating in parallel, thereby allowing the combination to utilize an effective output device size commensurate with the impedance of the radiator.
Abstract:
An antenna, includes in part, a metal piece formed on a surface of a substrate and configure to radiate electromagnetic waves, a metal feed formed in the substrate and configure to supply electrical signal to the metal piece, and a multitude of metallic walls formed in the substrate and enclosing the metal piece. The antenna may be a patch antenna, a monopole antenna, or a dipole antenna. Each metallic wall may include a via that is fully or partially filled by a metal, or an electroplated tub formed in the substrate. The antenna further includes, in part, a metallic trace formed on the surface of the substrate and enclosing the antenna. The substrate may be a printed circuit board.
Abstract:
A rectifying circuit includes, in part, first and second NMOS transistors, an impedance matching network, and an RF block circuit. The source and gate terminals of the first NMOS transistor respectively receive the ground potential and a biasing voltage. The second NMOS transistor has a gate terminal coupled to the drain terminal of the first NMOS transistor, a drain terminal coupled to the gate terminal of the first NMOS transistor, and a source terminal receiving the ground potential. The impedance matching network is disposed between the antenna and the drain terminals of the first and second NMOS transistors. The RF block circuit is coupled between the drain terminals of the first and second NMOS transistors and the output terminal of the rectifying circuit. The RF block circuit is adapted to prevent the RF signal from flowing into the output terminal of the rectifying circuit.