Abstract:
An optical fiber comprising: a core having an outer radius r1; a cladding having an outer radius r4 8 microns, the primary coating having in situ modulus EP of 0.35 MPa or less and a spring constant χP 10 microns and r6≤85 microns. The fiber has a mode field diameter MFD greater than 8.2 microns at 1310 nm; a cutoff wavelength of less than 1310 nm; and a bend loss at a wavelength of 1550 nm, when wrapped around a mandrel having a diameter of 10 mm, of less than 1.0 dB/turn.
Abstract:
The high-density FAU comprises a support substrate having a grooved front-end section that supports glass end sections of the small diameter low-attenuation optical fibers. A cover is disposed on the front-end section and secured thereto to hold the glass end sections in place. The substrate and the cover can be made of the same glass or glasses having about the same CTE. The glass end sections have a diameter d4 so that the pitch P2 of the fibers at the front end of the FAU can be equal to or greater than d4, wherein d4=2r4, with r4 being the radius of the glass end section as defined by the optical fiber cladding. The glass end section has a radius r4 less than 45 microns, allowing for a high-density FAU and a high-density optical interconnection device.
Abstract:
An optical fiber includes an outer diameter less than 220 μm, a glass fiber that includes a glass core and a glass cladding, a primary coating, and a secondary coating. The glass cladding surrounds and is in direct contact with the glass core. The primary coating surrounds and is in direct contact with the glass fiber. The primary coating can have a Young's modulus less than 0.5 MPa and a thickness less than 30.0 μm. The secondary coating surrounds and is in direct contact with the primary coating. The secondary coating can have a thickness less than 27.5 m. A pullout force of the optical fiber can be less than a predetermined threshold when in an as-drawn state. The pullout force may increase by less than a factor of 2.0 upon aging the primary and secondary coatings on the glass fiber for at least 60 days.
Abstract:
The present description provides reduced-diameter multimode optical fibers. The optical fibers include a reduced-diameter glass fiber and/or reduced-thickness coatings. The overall diameter of the optical fibers is less than 210 μm and examples with diameters less than 160 μm are presented. Puncture resistant secondary coatings enable thinning of the secondary coating without compromising protection of the glass fiber. The optical fibers are suitable for data center applications and features high modal bandwidth, low attenuation, low microbending sensitivity, and puncture resistance in a compact form factor.
Abstract:
The present description provides multimode optical fibers with reduced cladding thickness. The optical fibers include a reduced-diameter glass fiber and/or reduced-thickness coatings. The overall diameter of the optical fibers is less than 210 μm and examples with diameters less than 160 μm are presented. Puncture resistant secondary coatings enable thinning of the secondary coating without compromising protection of the glass fiber. The optical fibers are suitable for data center applications and features high modal bandwidth, low attenuation, low microbending sensitivity, and puncture resistance in a compact form factor.
Abstract:
Fiber coatings with low Young's modulus, low fiber pullout force for fibers in the as-drawn state, and small time-dependent increases in pullout force as the fiber ages. The fiber coatings are cured products of coating compositions that include an oligomer formed from an isocyanate, a hydroxy acrylate compound and a polyol. The oligomer includes a polyether urethane acrylate and a di-adduct compound. The reaction mixture used to form the oligomer includes a molar ratio of isocyanate:hydroxy acrylate:polyol of n:m:p, where when p is 2, n is in the range from 3.0 to 5.0 and m is in the range from 1.50n-3 to 2.50n-5. Control of the n:m:p ratio leads to compositions that, when cured, provide coatings and cured products having low Young's modulus, low pullout force on glass, and weak variations with time as the fiber ages.
Abstract:
An optical fiber comprising: (a) a core having an outer radius r1; (b) a cladding having an outer radius r4 8 microns, in situ modulus EP≤0.35 MPa and a spring constant χP 8 microns, r6≤56 microns. The fiber has a mode field diameter MFD greater than 8.2 microns at 1310 nm; a fiber cutoff wavelength of less than 1310 nm; and a bend loss at a wavelength of 1550 nm, when wrapped around a mandrel having a diameter of 10 mm, of less than 1.0 dB/turn.
Abstract:
An optical fiber coating die assembly is provided. The optical fiber coating die assembly includes a housing defining a guide chamber having an inlet for receiving optical fiber and an outlet, a guide die located at the outlet of the guide chamber, and a sizing die. The optical fiber coating die assembly also includes a coating applicator disposed between the guide die and the sizing die, and a tube operatively coupled to the inlet of the guide chamber and axially aligned with the chamber to receive the optical fiber fed into the guide chamber and provide a barrier to air flow.
Abstract:
Fiber coatings with low Young's modulus and high tear strength are realized with coating compositions that include an oligomeric material formed from an isocyanate, a hydroxy acrylate compound and a polyol. The oligomeric material includes a polyether urethane acrylate and a di-adduct compound, where the di-adduct compound is present in an amount of at least 2.35 wt %. The reaction mixture used to form the oligomeric material may include a molar ratio of isocyanate:hydroxy acrylate:polyol of n:m:p, where n may be greater than 3.0, m may be between n−1 and 2n−4, and p may be 2. Young's modulus and tear strength of coatings made from the compositions increase with increasing n. Coatings formed from the present oligomers feature high tear strength for a given Young's modulus.
Abstract:
The present disclosure provides coating compositions and cured products formed from the coating compositions. The cured products can be formed at high cure speeds from the coating compositions and feature low Young's modulus, high tear strength, and/or high tensile toughness. The cured products can be used as primary coatings for optical fibers. The primary coatings provide good microbending performance and are resistant to defect formation during fiber coating processing and handling operations. The coating compositions include an oligomer, an alkoxylated monofunctional acrylate monomer, and preferably, an N-vinyl amide compound.