Abstract:
There is provided a refrigeration cycle apparatus in which good lubricity can be achieved when a refrigeration cycle is performed using a refrigerant having a sufficiently low GWP. The refrigeration cycle apparatus contains a refrigerating oil and a refrigerant composition containing a refrigerant containing trans-1,2-difluoroethylene (HFO-1132(E)), trifluoroethylene (HFO-1123), and 2,3,3,3-tetrafluoro-1-propene (R1234yf).
Abstract:
A warm-water generating apparatus (1) uses, as a refrigerant, a mixed refrigerant containing at least 1,2-difluoroethylene (HFO-1132(E)). The warm-water generating apparatus (1) includes a compressor (21), a heat-source-side air heat exchanger (24), an expansion valve (23), and a use-side water heat exchanger (22). The water heat exchanger (22) causes the mixed refrigerant flowing therein and first water to exchange heat with each other to heat the first water.
Abstract:
A refrigeration cycle apparatus capable of keeping a LCCP low when a heat cycle is performed using a sufficiently small-GWP refrigerant, and a method of determining a refrigerant enclosure amount in the refrigeration cycle apparatus are provided. An outdoor unit (20) including a compressor (21) and an outdoor heat exchanger (23), an indoor unit (30) including an indoor heat exchanger (31), and a refrigerant pipe (5, 6) that connects the outdoor unit (20) and the indoor unit (30) to each other are provided. A refrigerant containing at least 1,2-difluoroethylene is enclosed in a refrigerant circuit (10) that is constituted by connecting the compressor (21), the outdoor heat exchanger (23), and the indoor heat exchanger (31) to one another. An enclosure amount of the refrigerant in the refrigerant circuit (10) per 1 kW of refrigeration capacity satisfies a condition of 160 g or more and 560 g or less.
Abstract:
Provided is a method for easily and safely removing, from a reactor, a catalyst used in a reaction that is performed using hydrogen fluoride in the presence of the catalyst. In a reaction performed in a reactor containing at least hydrogen fluoride and a catalyst, the catalyst is removed through a process comprising a heating step of performing heat-treatment so that the ambient temperature of the reactor is 80° C. or more after completion of the reaction, and a purge step of flowing inert gas into the reactor to discharge the hydrogen fluoride to the outside of the reactor after completion of the reaction.
Abstract:
The present invention provides a method that produces a composition containing 1223xd and/or 1213xa by a gas-phase reaction, and that achieves production efficiency higher than known methods. The present invention provides a method for producing a composition containing at least one fluorine-containing olefin selected from 1,2-dichloro-3,3,3-trifluoropropene (HCFO-1223xd) and 1,1,2-trichloro-3,3,3-trifluoropropene (CFO-1213xa), the method comprising subjecting at least one starting compound selected from a chlorine-containing alkane represented by Formula (1-1): CF3CHXCHX2, wherein each X is independently H or Cl, with the proviso that at least one X represents Cl, and a chlorine-containing alkene represented by Formula (1-2): CF3CX═CX2, wherein each X is independently H or Cl, with the proviso that at least one X represents Cl, to a gas-phase oxychlorination reaction in a temperature range of 380° C. or lower in the presence of oxidative gas and hydrogen chloride gas.
Abstract translation:本发明提供了一种通过气相反应产生含有1223xd和/或1213xa的组合物的方法,其实现了比已知方法更高的生产效率。 本发明提供一种制备含有至少一种选自1,2-二氯-3,3,3-三氟丙烯(HCFO-1223xd)和1,1,2-三氯-3,3,3-三氟丙烯的含氟烯烃的组合物的方法 ,3-三氟丙烯(CFO-1213xa),该方法包括使至少一种选自式(1-1)表示的含氯烷烃的起始化合物:CF 3 CHXCHX 2,其中每个X独立地为H或Cl,条件是 至少一个X表示Cl,和由式(1-2)表示的含氯烯烃:CF 3 C X = C X 2,其中每个X独立地为H或Cl,条件是至少一个X表示Cl, 在氧化性气体和氯化氢气体存在下,在380℃以下的温度范围内进行三相氧氯化反应。
Abstract:
A refrigeration cycle apparatus (1) is capable of performing a refrigeration cycle using a small-GWP refrigerant. The refrigeration cycle apparatus (1) includes a refrigerant circuit (10) and a refrigerant enclosed in the refrigerant circuit (10). The refrigerant circuit includes a compressor (21), a condenser (23), a decompressing section (24), and an evaporator (31). The refrigerant contains is a small-GWP refrigerant.
Abstract:
An object is to provide a novel low-GWP mixed refrigerant. Provided is a composition comprising a refrigerant, the refrigerant comprising difluoromethane (R32), trans-1,2-difluoroethylene (HFO-1132(E)), 1,3,3,3-tetrafluoropropene (R1234ze), and 1,1-difluoroethylene (HFO-1132a).
Abstract:
In an air conditioner that uses a refrigerant mixture containing at least 1,2-difluoroethylene, high efficiency is achieved. In the air conditioner (1), a compressor (100, 200) can be driven without interposing a power conversion device between an AC power source (90, 190) and a motor (70, 170). Thus, it is possible to provide the air conditioner (1) that is environmentally friendly and has a relatively inexpensive configuration.
Abstract:
In an air conditioner that uses a refrigerant mixture containing at least 1,2-difluoroethylene, high efficiency is achieved. The motor rotation rate of a compressor (100) can be changed in accordance with an air conditioning load, and thus a high annual performance factor (APF) can be achieved. In addition, an electrolytic capacitor is not required on an output side of a rectifier circuit (21), and thus an increase in the size and cost of the circuit is suppressed.
Abstract:
An object is to provide a novel low-GWP mixed refrigerant. Provided as a means for a solution is a composition comprising a refrigerant, the refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), 1,3,3,3-tetrafluoropropene (R1234ze), and carbon dioxide.