Abstract:
To make an inexpensive chromatographic column and perform chromatography with it, column walls and a column end with an inlet port are molded integrally from plastic and a snap-on end is molded integrally with an outlet port from plastic. A filter is placed in one end of the column and the column is filled with packing material up to the second end. A filter is placed on top of the packing and a snap-on end with a molded outlet port is a snapped onto the body with linear motion until an interference fit is formed. As the body and snap-on end are moved together cantilever members formed integrally with the snap on end are bent outwardly by detent members until the detent members are captured by an opening in the cantilever members.
Abstract:
In a piston pump for pumping liquid carbon dioxide at a temperature below 30 degrees Fahrenheit and pressures at least as high as 7500 psi, the volume leaving the pump is determined by measuring only pressure or other parameter related to flow and movement of the plunger. The position of the piston is measured and the resulting displacement is integrated to determine volume of fluid pumped.
Abstract:
A liquid chromatographic system includes columns, column mounting fixtures to which the columns are mounted, a detector, a collector, a controller and a plurality of RFIDs. A first RFID communicates with the controller and cooperating RFIDs mounted to other components provide information such as the history of components, parameters and the like. They also receive information from sensors relating to the operation of the liquid chromatograph, store the information and transmit it. Moreover, the RFIDs may substitute for hard wiring in many applications and may enable a central computer to control several liquid chromatographic system.
Abstract:
A bubbler is positioned within a solvent reservoir of a chromatographic system with its opening near the bottom of the system to measure the pressure of solvent. The bubbler may use air or may use helium or some other gas so that the solvent can be purged of excess air while its level is being monitored by the bubbler. The bubbler provides a depth signal to a microcontroller that records the drop in pressure and projects a low level of pressure at which point solvent should be replenished. The microprocessor may provide a signal to the operator or terminate operation or automatically replenish solvent depending upon the program.
Abstract:
Sample is applied to a chromatographic column containing shape stabilized packing and the liquid phase is pumped through the shape stabilized packing at a rate of flow greater than the standard rate of flow to obtain at least one of a target resolution and target time of run. Because of the improved resolution provided by the shape stabilized packing at higher rates of flow of solvent, the chromatographer can either obtain better resolution with a standard gradient or shorten the time of the run and reduce the amount of solvent needed by increasing the slope of the gradient.
Abstract:
A bubbler is positioned within a solvent reservoir of a chromatographic system with its opening near the bottom of the system to measure the pressure of solvent. The bubbler may use air or may use helium or some other gas so that the solvent can be purged of excess air while its level is being monitored by the bubbler. The bubbler provides a depth signal to a microcontroller that records the drop in pressure and projects a low level of pressure at which point solvent should be replenished. The microprocessor may provide a signal to the operator or terminate operation or automatically replenish solvent depending upon the program.
Abstract:
A liquid chromatographic system includes columns, column mounting fixtures to which the columns are mounted, a detector, a collector, a controller and a plurality of RFIDs. A first RFID communicates with the controller and cooperating RFIDs mounted to other components provide information such as the history of components, parameters and the like. They also receive information from sensors relating to the operation of the liquid chromatograph, store the information and transmit it. Moreover, the RFIDs may substitute for hard wiring in many applications and may enable a central computer to control several liquid chromatographic systems.
Abstract:
A liquid chromatographic system includes columns, column mounting fixtures to which the columns are mounted, a detector, a fraction collection system, a controller and a plurality of RFIDs. A first RFID communicates with the controller and cooperating RFIDs mounted to other components including the fraction collector to provide information such as the history of components, parameters and the like useful in maintaining inventory control and managing the system. They also receive information from sensors relating to the operation of the fraction collector including the location of sample containers.
Abstract:
To economically perform preparatory chromatography, a plurality of pumps each having a corresponding one of a plurality of pistons and a corresponding one of a plurality of cylinders are driven by one motor to draw and pump solvent simultaneously into corresponding columns. To form a gradient the pumps are connected to two-way valves that are connected alternately to a first solvent and a second solvent, whereby the time said valve is in a first position controls the amount of solvent drawn from said first reservoir into said pumps and the amount of time in said second position controls the amount of said second solvent drawn into said pumps and the solvent is mixed in the pumping systems. The detectors are photodiodes mounted to light guides in the flow cells that generate signals related to light absorbance and communicate with a controller, whereby said controller receives signals indicating solute between the light guides and causes collection of solute.
Abstract:
A method and apparatus for water sampling utilizing on-site solid phase extraction that permits high sample flow rates and eliminates the requirement for sample storage. Samples are collected at a relatively high flow rate and then temporarily stored under pressure before passing through a solid phase extraction device at a slower rate commensurate with the flow rate tolerance of the device. Each sample quantity is also automatically measured, eliminating the requirement for sample storage and subsequent manual quantity measurement and/or transportation to a laboratory.