Abstract:
An apparatus for applying preselected dye images to members incident to processes of the type utilizing sheets bearing dyes in the mirror images of the preselected images, wherein the sheets are overlayed on the members and maintained in pressurized engagement therewith while the sheets and the members are heated. The apparatus comprises a bed for receiving a member thereon with a dye bearing sheet on the member and a resiliently flexible membrane which is positionable over the sheet on the member. A vacuum assembly of the apparatus is operable to evacuate the area between the membrane and the bed in order to draw the membrane into pressurized engagement with the sheet on the member. Radiant heating elements of the apparatus are operable to heat the membrane after the vacuum assembly has been actuated, whereby the dye on the sheet is applied to the member to produce the preselected image thereon.
Abstract:
An ultraviolet reactive ink is applied to a translucent substrate in the desired circuit image and partially cured to a tacky state with ultraviolet radiation. A resist material is then applied to the substrate in the negative circuit image and metallic particles are deposited on the ink by vacuum deposition. The ink is then further cured to a hardened state with ultraviolet radiation applied from both above and beneath the substrate to counteract the tendency of the metal to reflect radiation applied only from above the substrate. Finally, the resist material is removed from the substrate leaving the fully formed circuit board comprising the substrate, the fully cured ink circuit image bonded thereto, and a metallic conductive layer on the ink.
Abstract:
A method and apparatus for effecting sublimation printing of a substrate wherein a matrix comprising the design to be printed is electrostatically charged in a given polarity and then a fine disperse dye powder, oppositely charged, is brought into contact with said matrix wherein the charged matrix attracts the oppositely charged dye particles to effect coating of the matrix with the dye, after which the coated matrix is moved into registry with the substrate to be printed, and specifically in overlying relation with respect to a surface of the substrate that has been coated with a dye receptive coating, after which the matrix is brought into pressurized contact with the coated surface of the substrate to cause sublimation of the dye pattern into said coated substrate surface.
Abstract:
An implantable lead comprises a lead body extending from a lead proximal end portion to a lead distal end portion. The lead body includes one or more longitudinally extending lumens. A conductor is received in, and extends along, a lumen. In varying examples, the implantable lead further comprises a tubular electrode co-axial with, and overlying portions of, the lead body. In one example, a lumen wall is sized and shaped to urge an electrically conductive interposer coupled with the conductor toward an inner surface of the electrode. In another example, a ring member is disposed within a lumen and the conductor is drawn and coupled thereto. In yet another example, an electrically conductive connector couples a first and a second conductor via grooves or threads. In a further example, an axial support member couples a distal end electrode and the lead body. Methods associated with the foregoing are also discussed.
Abstract:
An implantable lead comprises a lead body extending from a lead proximal end portion to a lead distal end portion. The lead body includes one or more longitudinally extending lumens. A conductor is received in, and extends along, a lumen. In varying examples, the implantable lead further comprises a tubular electrode co-axial with, and overlying portions of, the lead body. In one example, a lumen wall is sized and shaped to urge an electrically conductive interposer coupled with the conductor toward an inner surface of the electrode. In another example, a ring member is disposed within a lumen and the conductor is drawn and coupled thereto. In yet another example, an electrically conductive connector couples a first and a second conductor via grooves or threads. In a further example, an axial support member couples a distal end electrode and the lead body. Methods associated with the foregoing are also discussed.
Abstract:
An implantable lead comprises a lead body extending from a lead proximal end portion to a lead distal end portion. The lead body includes one or more longitudinally extending lumens. A conductor is received in, and extends along, a lumen. In varying examples, the implantable lead further comprises a tubular electrode co-axial with, and overlying portions of, the lead body. In one example, a lumen wall is sized and shaped to urge an electrically conductive interposer coupled with the conductor toward an inner surface of the electrode. In another example, a ring member is disposed within a lumen and the conductor is drawn and coupled thereto. In yet another example, an electrically conductive connector couples a first and a second conductor via grooves or threads. In a further example, an axial support member couples a distal end electrode and the lead body. Methods associated with the foregoing are also discussed.
Abstract:
A method for producing a circuit board involves printing a U.V. curable ink onto a substrate in a desired circuit pattern and curing the ink by exposing it to a pulsed U.V. source or subjecting the circuit pattern prepared from a U.V. curable ink containing magnetite particles to a magnetic field to move the magnetite particles to the upper surface of the U.V. curable ink. Other embodiments include circuit boards made in accordance with these methods and the use of the U.V. curable ink as a shielding composition for enclosures housing electronic equipment.
Abstract:
A method for producing a circuit board involves printing a U.V. curable ink onto a substrate in a desired cirucit pattern and curing the ink by exposing it to a pulsed U.V. source or subjecting the circuit pattern prepared from a U.V. curable ink containing magnetite particles to a magnetic field to move the magnetite particles to the upper surface of the U.V. curable ink. Other embodiments include circuit boards made in accordance with these methods and the use of the U.V. curable ink as a shielding composition for enclosures housing electronic equipment.
Abstract:
A method of applying a dye image to a plastic member and the image bearing member thereby formed. A disperse dye having a melting point which is below the thermal deflection temperature of the plastic of the member and a vaporization point which is above said deflection temperature is applied to a surface of the member in a desired image. The dye bearing plastic is then heated to a temperature which is above the melting point of the dye and below the thermal deflection temperature of the plastic, but which is nevertheless high enough to cause some softening of said plastic. The dye is then permitted to diffuse into the plastic to provide a sharp, clear and durable image thereon.
Abstract:
An apparatus and method for imprinting articles such as tiles by the sublimation transfer of dyes into a dye receptive surface coating provided thereon. A platen having a press member formed of liquid metal and a flexible confining membrane is utilized to heat and press a sheet having the dye imprinted design thereon so as to sublimate such designs into the adjacent coated surface of the articles. The press member is accordingly both capable of transmitting heat and pressure to the surface coating of such articles so as to simultaneously transfer said design and the texture of the membrane, sheet or separate texturing member disposed therebetween to the surface of the article.